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Abstract: This paper deals A new generalization of ostrowskis integral inequality for mappings whose
derivatives are bounded and applications in numerical integration and for special means.
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INTRODUCTION

In this work a number of authors have considered error inequalities for some known and some new
quadrature rules. Sometimes they have considered generalizations of these rules. For example, the well-known
trapezoid quadrature rule is considered in (N. Ujevi¢, 2004; P. Cerone, S.S. Dragomir, 2000) and some
generalizations are given in (P. Cerone, S.S. Dragomir, 2000) and (Lj. Dedi¢, M. Mati¢, J. Pecari¢ 2001). In (P.
Cerone, S.S. Dragomir, 2000) we can find.
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Proof:
We briefly sketch the proof. First we note that
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are Peano kernels for the trapezoid quadrature rule, that is, we have
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Now it is not difficult to prove that (3) holds, for example, by induction.
Corollary 2:
If we introduce the notations
t—a)"t (n— 2)a—nb
H,(t) = ( ﬂ.j [t+ >
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Then we see that H,, and T, form Appell sequences of polynomials, that is
H' (t)=H,_,(t), T (t)=T,,(t), H((t)=T,(t) =1
Thus we can also use integration by parts to prove that (3) holds.
Theorem 3:
The Peano kernels 5, (£),71 = 1, satisfy
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Proof:
A simple calculation gives
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From the above relation we see that (10) holds, since 1 — {—1) n*l = 0ifnis odd.

We have
a—b

L%JM&=£E

_ﬂ.(b— ajn+1

C 2P+ 1)

b
|H, (t)dt + J;+b|T” (t)|dt
Tz (14)

Finally, we have
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Theorem 4:
Let f : [cx, b] — R be a function such that f"n_l},ﬂ == 1, is absolutely continuous and there exist real

numbers ¥,,, I, such that ¥, = f':”} (t) = It € [a,b] Then
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Proof:
Let 72 be odd. From (4) and (10) we get
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Such that we have
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Theorem 5; )

Let f : [a, b] = R be a function such that f (=1 =1, is absolutely continuous and let 71 be odd. If
there exists a real number ¥, such thaty, = f (=) (t),t € [a, b] then
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In a similar way we can prove that (14) holds.

Corollary 6:
Note that we can apply the estimations (17) and (18) only if f"n} is bounded. On the other hand, we can

apply the estimation (22) if f (™) is unbounded above and we can apply the estimation (23) if f (m) g
unbounded below.

Example:
x Bint

If we consider the integral (special function) Si(x) = _Ir[:I "

this integral. We get the summation formula Si(x) = F(x) + R (x), where

dt and apply the summation formula (3) to
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And f(t) = (sint)/t. We calculate the derivatives f (7 (t) as follows. We have
i) )
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If we choose g(tj = sint and h(tj = 1/t then we get
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We now compare the summation formula (26) with the known compound formula (for the trapezoid rule),
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Where x; = th,h = x/r

Let us choose & = 1. The "exact" value is Si(1) = 0.946083070367.

If we choose M = 2 in (26) and n = 100 in (28) then we get Si(1) & 0.946080675618 and
Si(1) # 0.94608056025, respectively.

If we choose ™ = 3 in (26) and = = 8200 in (28) then we get Si(1) * 0.946083078954 and
Si(1) &~ 0.946083069999, respectively.

If we choose ™ = 4 in (26) and = = 32000 in (28) then we get 5i(1) & 0.946083070347 and
Si(1) &~ 0.946083070342 respectively.

All calculations are done in double precision arithmetic. The first approximate results (derived from 26) are
obtained much faster than the second approximate results (derived from 28). The same is valid if we use some
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quadrature rule of higher order, for example Simpson's rule. This is a consequence of the fact that we have to
calculate the function sin £ many times when we apply the compound formula and we have only to calculate

sin(x/2) and cos(x/2) when we apply the summation formula.

Similar summation formulas can be obtained for the integrals (special functions)

J5I(e* = 1)/tldt, [ [(cost —1)/t]dt, [ exp(—t?)dt, ete.
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