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INTRODUCTION 

 
 In this work a number of authors have considered error inequalities for some known and some new 
quadrature rules. Sometimes they have considered generalizations of these rules. For example, the well-known 
trapezoid quadrature rule is considered in (N. Ujević, 2004; P. Cerone, S.S. Dragomir, 2000) and some 
generalizations are given in (P. Cerone, S.S. Dragomir, 2000) and (Lj. Dedić, M. Matić, J. Pečarić 2001). In (P. 
Cerone, S.S. Dragomir, 2000) we can find.  
 

 

                                                                                                      (1)                             
For n=1 we get the trapezoid rule. 
 

            (2)                             
 
Original Results: 
 
Theorem 1:  

 Let  be a function such that  is absolutely continuous. Then  

 

                       (3)                     
 

where  the integer part of  
 

                                                                                                           (4)                              
 
And 
 

                                                   (5)                              
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Proof:  
 We briefly sketch the proof. First we note that 
 

 
 

                                                                                                                          (6)                              
 
are Peano kernels for the trapezoid quadrature rule, that is, we have 
 

                     (7)                   
 
 Now it is not difficult to prove that (3) holds, for example, by induction. 
 
Corollary 2:  
 If we introduce the notations 
 

                                                                                            (8)                              
 

                                                                                            (9)                             
 
  Then we see that  and  form Appell sequences of polynomials, that is 

 
. 

 
 Thus we can also use integration by parts to prove that (3) holds. 
 
Theorem 3:  
 The Peano kernels  satisfy 

 

                                                                                                           (10)                             
 

                                                                                                                 (11)                              
 

                                                                                                         (12)                              
 
Proof:  
 A simple calculation gives 
 

                                                                                 (13)                              
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 From the above relation we see that (10) holds, since  if  is odd. 

 We have 

                                                                              (14)                             
 

 
 
Finally, we have 
 

 
 

                                                                                                    (15)                              
 

 
 
 We introduce the notations 
 

 
 

                                                     (16)                              
 
Theorem 4:  

 Let  be a function such that  is absolutely continuous and there exist real 

numbers  such that . Then 

 

                                                                     (17)                             
 
 And 
 

                                                                         (18)                              
 
Proof:  
 Let  be odd. From (4) and (10) we get 

 

 
 
 Such that we have 
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                                                        (19)                              
 We also have 
 

                                                                                                (20)                              
 
 From (19), (20) and (7) we get 
 

 
 
 Let  be even. Then we have 

 

                                        (21)                              
 
Theorem 5;  

 Let  be a function such that  is absolutely continuous and let  be odd. If 

there exists a real number  such that  then 

 

                                                                                            (22)                              
 Where 
 

 
 

 If there exists a real number  such that  then 

 

                                                                                            (23)                              
Proof:  
 we have 
 

                                                                              (24)                              
 
 Since (6) holds. Then we have 
 

 
 

 
 

                                                                                                  (25)                             
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 In a similar way we can prove that (14) holds. 
 
Corollary 6:  

 Note that we can apply the estimations (17) and (18) only if  is bounded. On the other hand, we can 

apply the estimation (22) if  is unbounded above and we can apply the estimation (23) if  is 

unbounded below. 
 
Example: 

 If we consider the integral (special function)  and apply the summation formula (3) to 

this integral. We get the summation formula , where 

 

                                                                         (26)                              
 

 And . We calculate the derivatives  as follows. We have 

 

 
 
 If we choose  and  then we get 

 

 
 

                                                                                    (27)                              
 
 We now compare the summation formula (26) with the known compound formula (for the trapezoid rule), 
 

                                                                     (28)                             
 
 Where  

 Let us choose . The "exact" value is . 

 If we choose  in (26) and  in (28) then we get  and 

, respectively. 

 If we choose  in (26) and  in (28) then we get  and 

, respectively. 

 If we choose  in (26) and  in (28) then we get  and 

, respectively. 

 All calculations are done in double precision arithmetic. The first approximate results (derived from 26) are 
obtained much faster than the second approximate results (derived from 28). The same is valid if we use some 
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quadrature rule of higher order, for example Simpson's rule. This is a consequence of the fact that we have to 
calculate the function  many times when we apply the compound formula and we have only to calculate 

 and  when we apply the summation formula. 

 Similar summation formulas can be obtained for the integrals (special functions)        

. 
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