Vector Variational–like Inequalities with Respect to (η,F)

¹Elham Bayatmanesh and ²Mahboubeh Rezaie

¹Sama technical and vocational training college, Islamic Azad University, Malayer Branch, Malayer, Iran.

²University of Isfahan, Isfahan, 81746-73441, Iran.

Abstract: In this paper, we consider a new class of Vector variational inequalities with multivalued pseudomonotone with respect to (η,F) . The results presented in this paper are extension and improvement of the authores.

Key words: Vector variational–like inequalities, C–pseudomonotone.

INTRODUCTION

In (F. Giannessi, 1980) initially introduced and considered a vector variational inequality (VVI) in a finite-dimensional Euclidean space which is the vector-valued version of the variational inequality of Harman and Stampacchia. Ever since then, vector variational inequalities have been extensively studied and generalized in infinite-dimensional spaces since they have played very important roles in many fields such as mechanics, physics, optimization, control, nonlinear programming, economics and transportation equilibrium and so forth. On account of their very valuable applicability 20 years, see (G.Y. Chen, 1992; Y. Chiang, 2005; F. Giannessi, 1980; J. Huang and Y.P. Fang, 2006).

Let X and Y be two normed spaces and let L(X,Y) denote the family of all continuous linear operators From X into Y equipped with the uniform convergence norm When Y is the set \mathbb{R} of real numbers L(X,Y) is the usual dual space X^* of X. For any $x \in K$ and $u \in L(X,Y)$ we shall write the valued u(x) as $\langle u, x \rangle$. We suppose through out this chapter that K is a nonempty and convex subset of X, $T:K \to L(X,Y)$ is a set–valued mapping, $\eta:K \times K \to X$ and $f: K \times K \to Y$ are functions, and $\{C(x): x \in K\}$ of closed, convex and pointed cone of Y.

Lemma 1.1:

Let (Y,C) be a topological vector space ordered closed convex cone and pointed to have for each $x,y \in K$

- (1) $y-x \in intC$ and $y \notin intC \Rightarrow x \notin intC$ withint $C \neq \emptyset$.
- (2) $y-x \in C$ and $y \notin intC \Rightarrow x \notin intC$.
- (3) $y-x \in -intC$ and $y \notin -intC \Rightarrow x \notin -intC$.
- (4) y-x∈ -C and y∉-intC $\Rightarrow x$ ∉-intC.

Definition 2.1:

Let X, and Y are two normed spaces. A set–valued mapping $T:K \to L(X,Y)$ with compact values is said to be \mathcal{H} –hemicontinuous on K if for $x,y \in K$, the mapping $t \mapsto \mathcal{H}(T(x+t(y-x)),T(x))$ is continuous at 0^+ , where \mathcal{H} is the Hausdorff metric defined on CBL(X,Y) of all nonempty, closed, and bounded subsets of L(X,Y).

Let X be a nonempty set, we sall denote by $\mathcal{F}(K)$ the family of all nonempty finite subsets of X. Let Y be a nonempty set, X a topological space and $F:Y\to X$ a set-valued mapping. Then F is said to be transfer closed-valued iff $\forall (y,x) \in Y \times X$ with $x \notin F(y)$, there exists $y' \in Y$, such that $x \notin clF(y')$.

Definition 3.1:

Let K be a convex subset of vector space X. Then a mapping $F:K\to X$ is called a KKM mapping iff for each nonempty finite subset A of K, $convA\subset F(A)$, where convA denotes the convex hall of A and $F(A)=\cup \{F(x): x\in A\}$.

Let C be a closed, convex and pointed cone with intC $\neq \emptyset$. Then a partial order \leq_C in Y is defined as for y_1 , $y_2 \in Y$.

 $y_1 \ge_C y_2 \Leftrightarrow y_1 - y_2 \in C;$ $y_1 \ngeq_C y_2 \Leftrightarrow y_1 - y_2 \notin C.$

Definition 4 1

The set valued function F:K \rightarrow Y is said to C-convex that a cone in Y if for $x, y \in K$, $t \in [0,1]$ we have. $(1-t)F(x)+tF(y)\subseteq F((1-t)x+ty)+C$

Definition 5.1:

The Clarke's generalized derivative of $f:K \to \mathbb{R}$ at x in direction $v \in X$ is defined by

$$f^{0}(x; v) = \lim_{y \to x, \lambda \to 0^{+}} \sup \frac{f(y + \lambda v) - f(y)}{\lambda},$$

and the Clarke's generalized subdifferential of f at $x \in X$ is defined by

$$\partial f(x) = \{ \xi \in X^* : \langle \xi, v \rangle \le f^0(x; v), \forall v \in X \}.$$

Lemma 6.1:

(S.jr. Nadler, 1961) (Nadler's theorem). Let (X, ||.||) be a noremed vector space and let H be the Hausdorff metric on the collection CB(X) of all nonempty closed and bounded subsets of X induced by a metric d in term of d(x,y)=||x-y||, which is defined by

 $H(U,V)=\max(sup_{x\in U}inf_{y\in V}\|x-y\|,sup_{y\in V}inf_{x\in U}\|x-y\|)$

For U and V in CB(X). If U and V are compact sets in X, then for each $x \in U$, there exists $y \in V$ such that

$$||x - y|| \le H(U, V)$$
.

Lemma7.1:

- (M. Fakhar and J. Zafarani, 2005) Let K be a nonempty and convex subset of a Hausdorff topological vector space X. suppose that Γ , $\widehat{\Gamma}: K \to K$ are two set-valued mappings such that the following conditions are satisfied:
- (A_1) For for all $x \in K$ we have $\widehat{\Gamma}(x) \subseteq \Gamma(x)$.
- (A_2) $\hat{\Gamma}$ is a KKM map,
- $(A_3) \forall A \in \mathcal{F}(K)$, Γ is transfer closed-valued on convA,
- $(A_4) \ \forall \mathbf{A} \in \boldsymbol{\mathcal{F}}(\mathbf{K}), \ cl_K(\cap_{x \in convA} \Gamma(x)) \cap \mathbf{convA} = (\cap_{x \in convA} \Gamma(x)) \cap \mathbf{convA},$
- (A_5) there is a nonempty compact convex set B \subseteq K, such that $cl_K(\cap_{x \in B} \Gamma(x))$ is compact Then, $\bigcap_{x \in K} \Gamma(x) \neq \emptyset$.

Vector variational-like inequalities:

In this chapter, we introduce a new class vector variational inequalities and prove the solvability of vector variational inequality with respect to (η,F) (VVIF) for set–valued mapping T which is C–pseudomonotone with respect to (η,F) . we consider the vector variational inequalities with respect to (η,F) (VVIF):

Find $x \in K$ and $x^* \in T(x)$ such that $\langle x^*, \eta(y, x) \rangle + F(y) - F(x) \notin -intC(x), \forall y \in K$.

- (1) If F=0, then (VVIF) reduce to (VVI): Find $x \in K$ and $x^* \in T(x)$ such that $\langle x^*, \eta(y, x) \rangle \notin -intC(x)$, $\forall y \in K$.
- (2) If f: $K \to \mathbb{R}^n$, $Y = \mathbb{R}^n$, $T = \partial f$ and F = 0, then (VVIF) reduce to : Find $x \in K$ and $x^* \in \partial f$ such that $\langle x^*, \eta(y, x) \rangle \notin -intC(x)$, $\forall y \in K$.
- (3) If T=g: K \rightarrow Y is a singel-valued mapping, then (VVIF) reduces to: $\langle g(x), \eta(y,x) \rangle + F(y) F(x) \notin -intC(x), \forall y \in K$.
- (4) If $\eta(y,x)=y-x$, then (VVIF) is: Find $x \in K$ and $x*\in T(x)$ such that $\langle x*,y-x\rangle+F(y)-F(x)\notin -intC(x)$, $\forall y\in K$.

Definition 1.2:

T is said to be (1) Weakly C-pseudomonotone with respect to (η,F) on K whenever for each $x,y \in K(T(x),\eta(y,x))+F(y)-F(x)\not\equiv -intC(x)$ $\Longrightarrow \langle T(y),\eta(x,y)\rangle+F(x)-F(y)\not\equiv intC(y);$

- (2) C-pseudomonotone with respect to (η, F) on K whenever for each $x,y \in K$ $\langle T(x), \eta(y,x) \rangle + F(y) F(x) \not\subseteq -intC(x)$ $\Longrightarrow \langle T(y), \eta(x,y) \rangle + F(x) F(y) \not\subseteq -C(y)$;
- (3) Strictly C-pseudomonotone with respect to (η,F) on K whenever for each $x,y \in K$ $\langle T(x),\eta(y,x)\rangle + F(y) F(x) \not\subseteq -intC(x)$ $\Longrightarrow \langle T(y),\eta(x,y)\rangle + F(x) F(y) \not\subseteq -intC(y)$.

Remark 2.2:

It is easy to see that strict C-pseudomonotone implies that C-pseudomonoton nicity and the C-pseudomonotonicity implies that weak C-pseudomonotonicity. But the converse is not necessarily true.

Remark 3.2:

If T=g: K \rightarrow Y is a single-valued mapping then Definition 2.1, reduces to the following: g is said to (1) Weakly C-pseudomonotone with respect to (η,F) on K whenever for Each $x,y \in K \setminus g(x), \eta(y,x) + F(y) - F(x) \notin -intC(x)$ $\Longrightarrow \langle g(y), \eta(x,y) \rangle + F(x) - F(y) \notin intC(y);$

(2) C-pseudomonotone with respect to (η,F) on K whenever for each $x,y \in K$ $\langle g(x),\eta(y,x)\rangle + F(y) - F(x) \notin -intC(x)$ $\Longrightarrow \langle g(y),\eta(x,y)\rangle + F(x) - F(y) \in -C(y);$

(3) Strictly C–pseudomonotone with respect to (η,F) on K whenever for each $x,y \in K$

 $\langle g(x), \eta(y,x) \rangle + F(y) - F(x) \notin -intC(x)$ $\Longrightarrow \langle g(y), \eta(x,y) \rangle + F(x) - F(y) \in -intC(y).$

Proposition 4.2:

Let g: $K \to L(X,Y)$ be a single-valued map strictly C-pseudomonotonewith respect to (η,F) on k. If (VVIF) has a solution, then the solution is unique.

Proof: Let x_1 , $x_2 \in K$ be solutions of (VVIF), then

$$\langle g(x_1), \eta(x_2, x_1) \rangle + F(x_2) - F(x_1) \notin -intC(x_1),$$
 (2.1).
 $(x_2), \eta(x_1, x_2) \rangle + F(x_1) - F(x_2) \notin -intC(x_2),$ (2.2).

Since g is strictly C-pseudomonotone with respect to (η,F) on k, it follows from (2.1) that $(g(x_2),\eta(x_1,x_2))+F(x_1)-F(x_2) \in -intC(x_2)$

Which contradict (2.2). ■

We consider the generalized vector variational–like inequalities with respect To (η,F) (VVLIF): Find $x \in K$ and $x \in T(x)$ Such that $\langle x *, \eta(x,x) \rangle + F(x) \notin \text{intC}(x)$ and $\langle x *, \eta(y,x) \rangle + F(y) \notin \text{-intC}(x)$, $\forall y \in K$.

If F=0, then (VVLIF) reduces to (VVI): Find $x \in K$ and $x^* \in T(x)$ such that $\langle x^*, \eta(x,x) \rangle \notin intC(x)$ and $\langle x^*, \eta(y,x) \rangle \notin -intC(x)$, $\forall y \in K$.

- (2) If $T = \partial f$, $f: K \to \mathbb{R}^n$, $Y = \mathbb{R}^n$ and F = 0, then (VVLIF) reduce to : Find $x \in K$ and $x \in \partial f(x)$ such that $\langle x^*, \eta(x, x) \rangle \notin \text{intC}(x)$ and $\langle x^*, \eta(y, x) \rangle \notin \text{-intC}(x)$, $\forall y \in K$.
- (3) If $T=g:K\to Y$ is a singel-valued mapping, then (VVLIF) reduces to: $\langle g(x), \eta(x,x) \rangle + F(x) \notin intC(x)$ and $\langle g(x), \eta(y,x) \rangle + F(y) \notin intC(x)$, $\forall y \in K$.
- (4) If $\eta(y,x)=y$, for each $y \in K$, (VVLIF): Find $x \in K$ and $x^* \in T(x)$ such that $\langle x^*, \eta(x,x) \rangle + F(x) \notin intC(x)$ and $\langle x^*, \eta(y,x) \rangle + F(y) \notin -intC(x)$, $\forall y \in K$.

Theorem 5.2:

(a) If (x,x^*) is a solution of (VVLIF) and there exists $z_0 \in K$ such that

- $(1) \langle x^*, \eta(z_0, x) \rangle + F(z_0 x) \in \mathbb{C};$
- (2) Foreach $y \in K$, $F(y-z_0)=F(y)-F(z_0)$ and F(y-x)=F(y)-F(x);
- (3)If η (y-z₀,x)= η (y,x)- η (z₀,x); then (x,x*) is a solution of (VVIF),
- (b) Let (x,x^*) be a solution of (VVIF) and $y+x \in K$, for each $y \in K$. If
- (1) $\langle x^*, \eta(x,x) \rangle + F(x+y) F(y) F(x) \subseteq -C(x)$, for each $y \in K$,
- (2) η (y+x,x)= η (y,x)+ η (x,x), for each y \in K,
- (3) $\langle x^*, \eta(x,x) \rangle + F(x) \notin intC(x)$,

Then (x,x^*) is a solution of (VVLIF).

Proof: (a) Let (x,x^*) be a solution of (VVIF). Then $x \in K$ and $x^* \in T(x)$ such that $(x^*,\eta(y,x))+F(y) \notin -intC(x)$, $\forall y \in K$.

Since we have

$$\langle x^*, \eta(y-z_0, x) \rangle + F(y-z_0) - \{\langle x^*, \eta(y, x) \rangle + F(y-x) = \langle x^*, -\eta(z_0, x) \rangle + F(x-z_0) \in -C \subseteq -C(x), \forall y \in K.$$

It follows from Lemma 1.1 (4)

$$\langle x^*, \eta(y, x) \rangle + F(y) - F(x) \notin -intC(x), \forall y \in K.$$

There fore (x,x^*) is a solution of (VVIF).

(b) Let (x,x^*) be a solution of (VVIF). Then $x \in K$ and $x^* \in T(x)$ such that

 $\langle x^*, \eta(y, x) \rangle + F(y) - F(x) \notin - intC(x), \forall y \in K.$

 $\langle x^*, \eta(y+x,x) \rangle + F(y) - F(x) \notin -intC(x), \forall y \in K.$

$$\langle x^*, \eta(y+x,x) \rangle + F(y+x) - F(x) \notin -intC(x), \forall y \in K.$$

(2.3)

 $\langle x^*, \eta(y+x,x) \rangle + F(y+x) - F(x) - \{\langle x^*, \eta(y,x) \rangle + F(y)\} \forall y \in K.$

 $=\langle x^*, \eta(x,x)\rangle + F(y+x) - F(y) - F(x) \in -C(x), \forall y \in K.$

By Lemma 1.1 (4), it follows (2.1) and (1) that $\langle x^*, \eta(y, x) \rangle + F(y) \notin - intC(x), \forall y \in K.$

Which it shows that (x,x^*) is a solution of (VVLIF). This completes the proof.

Lemma 6.2:

Let X and Y be two normed spaces. Assume that $T: K \to L(X,Y)$ Weakly pseudomonotone on K with respect to (η, F) , \mathcal{H} -hemicontinuous with compact values. Suppose that the following conditions are satisfied:

- (1) The set-valued mapping W: $K \to Y$ defined by W(x) = Y\{-intC(x)} is w× τ -closed.
- (2) F and η are continuous in the second argument.
- (3) For each $x \in K$, $\langle T(x), \eta(x,x) \rangle = \{0\}$.
- (4) For each $x,y,z \in K$, the set-valued mapping $y \mapsto \langle T(z), \eta(y,x) \rangle + F(y) F(x)$ is C(x)-convex.

Then (VVIF) is equivalent to the problem: Find $x_0 \in K$ such that for each $y \in K$, $\langle T(y), \eta(x_0, y) \rangle + F(x_0) - F(x_0, y)$ $F(y) \not\subseteq intC(y)$.

Proof: Since T is weakly pseudomonotone on K with respect to (n,F) therefore any solution of problem (VVIF)

 $\langle T(y), \eta(x_0, y) \rangle + F(x_0) - F(y) \not\subseteq int C(y), \forall y \in K.$

So is a solution.

Conversely, suppose that can find $x_0 \in K$, such that

 $\langle T(y), \eta(x_0, y) \rangle + F(x_0) - F(y) \not\subseteq intC(y), \forall y \in K.$

Now, we have, $x_0 \in K$, such that for each $y \in K$

 $\langle T(y), \eta(x_0, y) \rangle + F(x_0) - F(y) \not\subseteq intC(y), \forall y \in K.$

We consider
$$y_t$$
 for $t \in (0,1)$. Replacing y by $y_t = x_0 + t(y - x_0) \in K$ in the condition (3) we deduce $\{0\} = \langle T(y_t), \eta(y_t, y_t) \rangle + F(y_t) - F(y_t) \not\equiv \inf C(y_t),$ (2.4).

By condition (4), we have

$$t[\langle T(y_t), \eta(y, y_t) \rangle + F(y) - F(y_t)] + (1-t) [\langle T(y_t), \eta(x_0, y_t) \rangle + F(x_0) - F(y_t)]$$

$$\subseteq \langle T(y_t), \eta(y_t, y_t) \rangle + F(y_t) - F(y_t) + C(y_t), \tag{2.5}$$

Then we have

$$\langle \mathsf{T}(y_t), \mathsf{\eta}(y, y_t) \rangle + \mathsf{F}(y) - \mathsf{F}(y_t) + \mathsf{C}(y_t) \not\subseteq -\mathrm{int} \mathsf{C}(y_t), \tag{2.6}$$

Therefore (2.5), (2.6) and condition (3) since $T(y_t)$ and $T(x_0)$ are compact from Lemma 5.1 it follows that for each $v_t \in T(y_t)$ there exists $u_t \in T(x_0)$ such that

$$||v_t - u_t|| \le H(\mathsf{T}(y_t), \mathsf{T}(x_0))$$

Since $T(x_0)$ is compact, without loss of generalizes we suppose that when $u_t \to u_0 \in T(x_0)$ as $t \to 0^+$. Since T is \mathcal{H} -hemicontinuous thererfore $H(T(y_t),T(x_0))\to 0$ as $t\to 0^+$ so

wehave

$$||v_t - u_0|| \le ||v_t - u_t|| + ||u_t - u_0|| \le H(T(y_t), T(x_0)) + ||u_t - u_0||$$
as $t \to 0^+$. So when

 $\|\langle (v_t - u_0), \eta(y, x_0) \rangle \| \le \|v_t - u_0\| \|\eta(y, x_0)\| \to 0.$

since $Y\setminus -intC(x_0)$ is closed there for from (2.6) we deduce that $(u_0, \eta(y, x_0)) + F(y) - F(x_0) \notin -intC(x_0)$.

Consequently

 $\langle T(x_0), \eta(y, x_0) \rangle + F(y) - F(x_0) \not\subseteq -intC(x_0). \blacksquare$

Theorem 7.2:

Let X and Y be two normed spaces. Assume that T: $K \to L(X, Y)$

Weakly pseudomonotone on K with respect to (η,F) , \mathcal{H} —hemicontinuous with compact values. Suppose that the following conditions are satisfied:

- (1) The set-valued mapping W: $K \to Y$ defined by W(x)=Y\{-intC(x)} and W': $K \to Y$ defined by
- $W'(x)=Y\setminus \{-intC(x)\}\$ are closed, where w is weak topology of X.
- (2) F and η continuous in the second aregument.
- (3) For each $x, y \in K$, $\langle T(x), \eta(x,x) \rangle = \{0\}$.
- (4) For each $x,y,z \in K$, the set-valued mapping $y \mapsto (T(z),\eta(y,x))+F(y)-F(x)$ is C(x)-convex.
- (5) There exist a nonempty compact set $M \subset K$, and a nonempty compact convex set $B \subset K$ such that for each for all $x \in K \setminus M$, there is $y \in K$ such that

 $\langle T(y), \eta(x,y) \rangle + F(x) - F(y) \subseteq intC(y)$.

then (VVIF) has a solution.

Proof: we have that for $y \in K$, the set

 $\Gamma(y) = \{x \in K : \langle T(y), \eta(x,y) \rangle + F(x) - F(y) \not\subseteq intC(y) \}$

Is closed. Let $\{x_n\}$ be a sequence in $\Gamma(y)$ convergent to $x_0 \in K$. since $x_n \in \Gamma(y)$ there exists $v_n \in \Gamma(y)$ satisfying

 $z_n = \langle v_n, \eta(x_n, y) \rangle + F(x_n) - F(y) \notin intC(y),$

Then therefore, $z_n \in W(x_n)$ and hence $(x_n, z_n) \in G_r(W)$. since $\Gamma(y)$ is compact, Let $\{v_m\}$ be a subsequence of $\{v_n\}$ that convergent to $v_0 \in T(y)$. by continuity of η , $\{\eta(x_m, y)\}$ is norm bounded and therefore by proposition 3.2 (G.Y. Chen, 1992) and continuity of F, we have $z_0 = \lim_m z_m = \langle v_0, \eta(x_0, y) \rangle + F(x_0) - F(y)$.

Since $G_r(W)$ is closed, then $(x_0, z_0) \in G_r(W)$ and hence $(v_0, \eta(x_0, y)) + F(x_0) - F(y) \notin intC(y)$.

Then, $x_0 \in \Gamma(y)$, this means $\Gamma(y)$ is subset closed. Now, for each $y \in K$, we define the set–valued mapping $\hat{\Gamma}: K \to K$ by

 $\widehat{\Gamma} := \{ x \in K : \langle T(x), \eta(y, x) \rangle + F(y) - F(x) \not\subseteq -intC(x) \}.$

We show that $\hat{\Gamma}$ is a KKM mapping. Since if $\hat{\Gamma}$ is not a KKM mapping, then there exists $\{x_1, x_2, ..., x_n\} \subset K$, $t_i \ge 0$, i=1,2,...,n, with $\sum_{i=1}^n t_i=1$ such that $x=\sum_{i=1}^n t_i \, x_i \notin \bigcup_{i=1}^n \hat{\Gamma}(x_i)$ then for each i=1,2,...,n we have $\langle T(x), \eta(x_i, x) \rangle + F(x_i) - F(x) \subseteq -\mathrm{int}C(x)$,

$$\sum_{i=1}^{n} t_i \langle T(x), \eta(x_i, x) \rangle + \sum_{i=1}^{n} t_i \langle F(x_i) - F(x) \rangle \subseteq -intC(x).$$
(2.7)

On the otherhand by (4)

$$\langle \mathsf{T}(\mathsf{x}), \mathsf{\eta}(\mathsf{x}, \mathsf{x}) \rangle - \sum_{i=1}^{n} t_i \left[\langle \mathsf{T}(\mathsf{x}), \mathsf{\eta}(\mathsf{x}_i, \mathsf{x}) \rangle + \mathsf{F}(\mathsf{x}_i) - \mathsf{F}(\mathsf{x}) \right] \subseteq -\mathrm{int}C(\mathsf{x}). \tag{2.8}$$

By (2.7), (2.8) and second part two condition (3) $\langle T(x), \eta(x,x) \rangle \in -intC(x),$ (2.9)

Thus by which contradict $C(x) \neq Y$. $\hat{\Gamma}$ is a KKM mapping. Since T is weakly pseudomonotone we have $\hat{\Gamma}(y) \subseteq \Gamma(y)$ for each $y \in K$. by Lemma 6.2 have solution.

Theorem 8.2:

Let set–valued function T: $K \to L(X, Y)$ weakly pseudomonotone on K with respect to(η ,F),

 ${\mathcal H}$ -hemicontinuous with compact values if

(1) The set– valued mapping $W:K \to Y$ defined by $W(x)=Y \in C(x)$ and

 $W': K \to Y$ defined by $W'(x)=Y \setminus \{-intC(x)\}\$ are $w \times \tau$ -closed, where w is weak topology of X.

- (2)F and η are weak–norm continuous in the first and second component.
- (3) for each $x,y \in K$, $\langle T(x), \eta(x,x) \rangle = \{0\}$.
- (4) For each $x,y,z \in K$, the set-valued mapping $y \mapsto \langle T(z), \eta(y,x) \rangle + F(y) F(x)$ is C(x)-convex.
- (5) There exist a nonempty weak compact set $M \subseteq K$, and a nonempty weak compact convex set $B \subseteq K$ such that for each for all $x \in K \setminus M$, there is $y \in K$ such that $\langle T(y), \eta(x,y) \rangle + F(x) F(y) \subseteq intC(y)$. then (VVIF) has a solution.

Proof: by a similar proof of theorem 7.2 can deduced the result. we have that for $y \in K$, the set $\Gamma(y) = \{x \in K : \langle T(y), \eta(x,y) \rangle + F(x) - F(y) \not\equiv \text{int}C(x)\}$

Is weak closed. If $\{x_{\beta}\}$ be a net in $\Gamma(y)$ convergent to $x_0 \in K$.since $x_{\beta} \in \Gamma(y)$ there exists $v_{\beta} \in \Gamma(y)$ satisfying

 $z_{\beta} = \langle v_{\beta}, \eta(x_{\beta}, y) \rangle + F(x_{\beta}) - F(y) \notin \text{intC}(x_{\beta}),$

Then, $z_{\beta} \in W(x_{\beta})$ and hence $(x_{\beta}, z_{\beta}) \in G_r(W)$. Let $\{v_{\lambda}\}$ be a subnet of $\{v_{\beta}\}$ that convergent to $v_0 \in T(y)$. by continuity of η , $\{\eta(x_{\lambda}, y)\}$ is norm bounded. So there exists λ_0 such that $\{\eta(x_{\lambda}, y) : \lambda \ge \lambda_0\}$ is norm bounded. by proposition 3.2 (G.Y. Chen, 1992) and continuity of F, we have $z_0 = \lim_{\lambda \ge \lambda_0} z_{\lambda} = \langle v_0, \eta(x_0, y) \rangle + F(x_0) - F(y)$

Since $G_r(W)$, $w \times \tau$ —closed then $(x_0, z_0) \in G_r(W)$ and so $(v_0, \eta(x_0, y)) + F(x_0) - F(y) \notin intC(x_0)$.

Then, $x_0 \in \Gamma(y)$, this means $\Gamma(y)$ is subset weak closed. by similar theorem 7.2 (VVIF) has a solution.

ACKNOWLEDGEMENT

In this research, the authors were partially supported by the Center of Excellence for Mathematics, University of Isfahan, Isfahan, Iran.

REFERENCES

Chen, G.Y., 1992. Existence of solutions for a vector variational inequality. An extension of Hartman–Stampacchiatheorm. J. Optim Theory Appl., 74: 445-456.

Chiang, Y., 2005. Semicontinuous mapping in t. v. s. with applications to mixed vector variatioal–like inequalities. J. Optim., 32: 467-486.

Fakhar, M. and J. Zafarani, 2005. Generalized vector equilibrium problems for pseudomonotonebifunction, J. Optim. Theory Appl., 126: 109-124.

Giannessi, F., 1980. Theorems of alternative, quadratic programs and compllementarity problems, Invariational inequalities and complementarity problems (Proceeding of an International school, Erice, 1978), R.W. Cottle, F. Giannessi and J.L. Lion, Ends., John Wily and Sons, Chichester, UK., pp: 151-186.

Huang, J. and Y.P. Fang, 2006. Strong vector variational inequalities in Banach spaces, Appl.,19: 362-368. Nadler, S.jr., 1961. Multi-valued contraction mappings, pacific Journal of Mathematics, 30: 305-310.