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Abstract: This paper is concerned the analysis of functionally graded cylindrical shell under impulse
loads by using the Rayleigh-Ritz method. The mass density and modulus of elasticity of the FG
cylindrical shell is assumed to vary according to a power law distribution in terms of the volume
fractions of the constituents. Hamilton’s principle with Rayleigh-Ritz method is used to derive the
equation of motion of the FG cylindrical shell. The steady responses of forced vibration can be
obtained by solving the equation of motion. The considered impulse load types are step pulse, sine
pulse, triangular pulse and exponential pulse. The analytical results in special case are compared and
validated using finite element method.
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INTRODUCTION

A functionally graded material (FGM) is usually a mixture of two material phases that material properties
vary continuously and smoothly through the thickness from the surface of a ceramic to that of a metal on the
other surface. There is not any mechanically weak junction or interface at FG shells because the material
properties have gradual transition as a function. FGMs can offer several benefits such as minimization of stress
concentration and attenuation of stress waves, improvement in the response of the structures, reduction of
thermal stresses. Therefore, FGMs have got potential applications in an extensive range of engineering
components which include the heat-engine components, armor plating, rocking motor casing, human implants
and thermoelectric generators, just to name a few. There are some researches related to response of FG
cylindrical shell under dynamic mechanical loads. Reddy’s third order shear deformation theory is used to
predict the transient response of simply supported FG cylindrical shell to low-velocity impact by a solid striker
(Gong et al., 1999). A numerical method for analyzing transient waves in FGM cylinders is presented by Han et
al. (2001). At their numerical method, the FG shell along the wall thickness was divided into layer elements
with three nodal lines. It is supposed that the material properties inside each element were changed linearly in
the thickness direction. Nelson’s numerical-analytical method (Nelson et al. 1971) was used by Han et al.
(2002) to find a solution for guided waves in graded cylinders. In addition, modal analysis and Fourier
transformation were used to offer a numerical method to analyze transient waves in FG cylindrical shells under
impact point loads (Han et al., 2002). Also, Elmaimouni et al. (2005), using the harmonic functions and
Legendre polynomial, developed a numerical method to calculate guided wave propagation in a FG infinite
cylinder. Next, Shaker et al. (2006) studied radial wave propagation and vibration in FG thick hollow cylinders.
In their method, it is assumed that FG cylinder was made from many isotropic subcylinders. Each layer had
constant material properties and functionally graded properties were reached by appropriate arrangement of
layers in the multilayer cylinder. Afterward, a thick hollow FG cylinder with finite length subjected to impact
internal pressure was presented and investigated the time histories of two dimensional wave propagation and
stresses and displacements (Asgari et al., 2009).

There are some works related to free vibrations of FG cylinders. Loy et al. (1999) and Pradhan et al. (2000)
investigated the vibration behavior of FG cylindrical shells based on the Rayleigh-Ritz method and love’s
theory. It was revealed from the studies that the frequency characteristics of FG cylindrical shells are to those of
isotropic shells.Reddy’s higher order-order shear deformation shell theory was used by Yang and Shen (2003) to
investigate dynamic instability and free vibration of FG cylindrical panels under thermo-mechanical loads
consisting of a periodically pulsating and static forces in axial direction.

Then, Najafizadeh and Isvandzibaei (2007) using higher order shear deformation plate theory to study the
vibration of thin FG cylindrical shells with ring supports. Next, Ansari and Darvizeh (2008) presented a general
analytical approach to predict vibrational behavior of FGM shells.

A number of works has been done related to buckling and stabilities of FG cylinders. Stability of FG
conical and cylindrical shells under non-periodic impulsive loading was performed by Sofiyev (2003, 2004). In
addition, the stability of FG cylindrical shells under axial compressive load. Moreover, Kadoli and Ganesen
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(2006) studied free vibration and linear thermal buckling analyses of FG cylindrical shells subjected to a
temperature-specified boundary condition.

Despite the fact that many studies on the vibration problems of the FG cylindrical shell have been
published, the transient analysis of thin FG cylindrical shell under impulse loads have to be comprehensively
studied. An efficient way for calculating the forced vibration responses can be obtained. Also, it can be used in
the dynamic design and vibration control of the cylindrical shell. In this study, forced vibration of cylindrical
shell made of functionally graded material is investigated by using the Rayleigh-Ritz method.

Formulation:

Consider a FGM circular cylindrical shell, with a mean radius @, thickness h, length L with cylindrical
coordinate (x,0,z) (Fig. 1). It is assumed that the mechanical properties of the shell is varied with a desired
change of the volume fractions of the two materials in between the inner and outer surfaces. The mass density p
and modulus of elasticity E are supposed to be in terms of a simple power law distribution and poisson’s ratio y
is supposed to be constant as follow (Matsunaga, 2008).

E(z) =Ey + ECMVfuu(Z) =u,p(z) =pu+ PemVr )
Where
Ecu = Ec — Emy Pem = pc — Py Vy = (05 + %)P 2

where P 0 is the power law index and —h/2 z h/2. Subscript C and M refer to the ceramic and metal
constituents, respectively. The value of the power law index (P) equal to zero represent fully ceramic shell and
infinite P, represent a fully metallic shell. For thin cylindrical shell, the strain-displacement relationships are
given by Soedel (1981).
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Fig. 1: Geometry of functionally graded cylindrical shell and coordinates.

Rayleigh-Ritz method with Hamilton’s principle will be utilized to determine the equation of motion of the
FG cylindrical shell. Hamilton’s principle is written by

fflz §(T — U)dt + fff sWdt =0, )
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where T, U, W are the kinetic energy, strain energy and work , t; and t, are the integration time limits, §(0)
denotes the first variation. The kinetic energy and strain energy and virtual work of a conical shell can be
written as

U= % f_"’{;z I e} IS)e} a dydod, ©)
1 ch/2 (2m (L au\2  [ov\2 = (ow)?

T=:L 0l Iy p@ [(E) + (E) + (I) ]a dxdod, (7

SW = [ [(q16u + 426V + q56w) a dydg (8)

where q;,q, and q3 are the distributed load components per unit area along the x, 6,and z directions and are
assumed to act on the neutral surface of the shell. The units of qq,q, and q3 are [N/m?].The distributed loads
q1(t), q,(t) are equal to zero and the FG cylindrical shell subjected to distributed radial load of q5(t) per unit

area on a localized small patch bounded by —{; 6 {;and (g —-L,) x (g + L,) that they are written by

q:() = 0,q,(t) = 0,q3(0) = X, XL, q30Fj5(0) &)
L/2 6,4
L) (3] Fw
x :
Ly L
le ‘ | i

Fig. 2: Distributed load over small rectangular area.

3o is the amplitude. Substituting Eq. (9) into Eq. (8). Based on Kandasamy (2008), the work done by this
load on the cylindrical shell is

LiL
oW = [ J,"(asdw) a dyd (10)
2

For simply supported cylindrical shell, the boundary conditions at both ends can be written as
v=w=N; =M, =0 (11)

at x =0 and x = L would be considered. In order to use the Rayleigh-Ritz method, the displacement
should be expressed in terms of generalized coordinates:

u(x, 6,0) = I, B, Uy (x, 0)pyy(8) = UT (x, 0)P(2) (12)
v(x,6,0) = B, S, Vi (x,0) 13y (8) = V7 (x, 0)r (1) (13)
w(x, 0,8 = X, T Wy (x, )54 () = W (x, 0)s(t) (14)

where U, V and W are the displacement shape functions, and p, r, s are the generalized coordinates or modal
coordinates. They are written by

P = [P11, ) P1nP21 =) Pans Pty o r Pan]”

T = [To1) e Tir T2ty oo Tams oo Tnds woos T ©

s = [511' vy S1 8215 s San"'lSmlv"'vsmn]T (15)
U = [Ug, oo Upps Uy s Usms ooy Uiy woer U]

V = [Vig, eor Vins woos Vars coer Vari woos Vit woer Vi

W = [Wig, o, Wan Worns ooy Wiz oees Wi T
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The principal mode shapes of cylindrical shells with simply supported boundaries can be expressed as:

U;j(x,0) = cos [ingx)] cos(jO)

Vij(x,0) = sin[™2] sin(jO) (16)

l
W;j(x,0) = sin [mgx)] cos(j6)
i=12.,m; j=12.,1n

where i and j are the wave numbers in the meridional and circumferential directions. Substituting Egs. (6), (7)
and (10) in terms of the displacement shape functions and generalized coordinates and into Eq. (5) and
performing the variation operation in terms of p, r and s. Then, the equation of motion of the cylindrical shell
can be obtained as

MEX+ KX = Q, {17

dt2

where M, K¢, Q and X the generalized mass matrix, stiffness matrix, forcing matrix and generalized coordinate
matrix and written by

M; 0 O Ki K, K
M, = [0 M, 0 ] K. =|K] K, Ks
0 0 M KT K& K
Q=1[0 0 Fyqs]", X=1[p" """ (18)

where My, M, and M3 are the modal mass matrices and Ky, K5, ..., Kgare the modal stiffness matrices and Fg3 is
the forcing matrice which are given in Appendix A. A solution of Eq. (17) is in the form

X(t) = Xpelt (19)

Where X, is the eigenvector and A is the eigenvalue. Substituting Eq. (19) into the homogeneous differential
equation of Eq. (17). Then the following standard eigenvalue problem can be found:

(M A2+ K)Xo =0 (20)

From Eq. (20) the eignvectors and eignvalues can be obtinethed. The imaginary parts of the eigenvalues are
the natural frequencies of the FG cylindrical shell. Substituting Eq. (18) into Eq. (17) gives.

Fqsi]-lh

3ij
For zero initial conditions, the solution of equation (21) will be
Fg3;;q30 ¢ .
si(0) = o Jy F@) sinw; (t — 1)d, (22)
ij
and the transverse displacement at any point of the cylindrical shell is given by
Fgzgds0 o . .
w(x,6,t) =¥, Y0, MZL sin[™9] cos(jO) fOtF(T) sinw;; (t — 1)d, (23)

j
The convolution integral in Egs. (22)-(23) have been solved analytically for 4 kinds of forcing functions.

Fo, 0<t<t,

0, t>t,
F
= (1 = cos wy;t), 0st<t
wij

Step pulse (Fig. 3a): F(t) = {

fot F(@)sinw; (t —1)d, = (24a)

%(COS w;;(t — t1) — cos wi;t), t >t
ij
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Fig. 3: Considered pulse shapes. (a) Step pulse. (b) Sine pulse. (c) Triangular pulse. (d) Exponential pulse.
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RESULTS AND DISCUSSION

The forced vibration responses of FG cylindrical shell with two simply supported boundaries are computed.
The structural parameters of the FG cylindrical shell sample are: a = 0.4 m and L = 0.4 m. q3, is the amplitude
of the impulse loads that equal to 4.0 MPa. It is assumed that the load applied in the radial direction over a small
rectangular area:l, = 0.01m ,{ = 5.062°. The power of exponential pulse is a=350. For this study, the
duration of dynamic loads is chosen same as the natural period of the metal cylindrical shell. By numerical
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calculation, it is found that the first 27 terms of Eq. (23) are sufficient to have enough accuracy. The
displacement in the Z directions of the middle surface of FG cylindrical shell at position (L/2,0) varying with
time are shown in Figs. (6-7).

From Figs. (8), it is observed that there is a good agreement between the present method and finite element
method. It is clear that the maximum radial deflections obtained by the two methods are approximately
identical.
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Fig. 6: Time response of center point deflection w for various power law indexes (P) under: (a) Step Pulse (b)
Sine Pulse.
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Fig. 7: Time response of center point deflection w for various power law indexes (P) under: (¢) Triangular Pulse

(d) Exponential Pulse.
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Fig. 8: Comparison of center deflection w with Finite Element Method under: (e) Step Pulse (f) Exponential
Pulse.
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Fig. 9: FEM model for cylindrical shell.

The material properties used in the present study is:
Metal (Aluminum, Al): Ey = 70 GPa, py, = 2710 kg/m3, u =03
Ceramic (Almina, Al;03): Ec = 380 GPa, p, = 3800 kg/m3, p= 0.3

It is clear from Fig. (6-7) that the largest deflection happen for metal (p= infinity) under step pulse because
the area below the load—time curve is greater in comparison with others pulses. When power law index (P)
increases, the corresponding time response also increases. The motions of displacement under triangular pulse
are similar to the sine pulse. In addition, the maximum radial deflections of present method very close to finite
element method (Fig. 8). The minimum deflections in comparison with other pulses happen under triangular
pulse.
Appendix A:

The expressions of the modal mass, modal stiffness and forcing matrices in Egs. (18) are given by

21 h/2 2n 1 ~h/2
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