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Abstract: This paper is concerned the analysis of functionally graded cylindrical shell under impulse 
loads by using the Rayleigh-Ritz method. The mass density and modulus of elasticity of the FG 
cylindrical shell is assumed to vary according to a power law distribution in terms of the volume 
fractions of the constituents. Hamilton’s principle with Rayleigh-Ritz method is used to derive the 
equation of motion of the FG cylindrical shell. The steady responses of forced vibration can be 
obtained by solving the equation of motion. The considered impulse load types are step pulse, sine 
pulse, triangular pulse and exponential pulse. The analytical results in special case are compared and 
validated using finite element method. 
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INTRODUCTION 
 

A functionally graded material (FGM) is usually a mixture of two material phases that material properties 
vary continuously and smoothly through the thickness from the surface of a ceramic to that of a metal on the 
other surface. There is not any mechanically weak junction or interface at FG shells because the material 
properties have gradual transition as a function. FGMs can offer several benefits such as minimization of stress 
concentration and attenuation of stress waves, improvement in the response of the structures, reduction of 
thermal stresses. Therefore, FGMs have got potential applications in an extensive range of engineering 
components which include the heat-engine components, armor plating, rocking motor casing, human implants 
and thermoelectric generators, just to name a few. There are some researches related to response of FG 
cylindrical shell under dynamic mechanical loads. Reddy’s third order shear deformation theory is used to 
predict the transient response of simply supported FG cylindrical shell to low-velocity impact by a solid striker 
(Gong et al., 1999).  A numerical method for analyzing transient waves in FGM cylinders is presented by Han et 
al. (2001). At their numerical method, the FG shell along the wall thickness was divided into layer elements 
with three nodal lines. It is supposed that the material properties inside each element were changed linearly in 
the thickness direction. Nelson’s numerical-analytical method (Nelson et al. 1971) was used by Han et al. 
(2002) to find a solution for guided waves in graded cylinders. In addition, modal analysis and Fourier 
transformation were used to offer a numerical method to analyze transient waves in FG cylindrical shells under 
impact point loads (Han et al., 2002). Also, Elmaimouni et al. (2005), using the harmonic functions and 
Legendre polynomial, developed a numerical method to calculate guided wave propagation in a FG infinite 
cylinder. Next, Shaker et al. (2006) studied radial wave propagation and vibration in FG thick hollow cylinders. 
In their method, it is assumed that FG cylinder was made from many isotropic subcylinders. Each layer had 
constant material properties and functionally graded properties were reached by appropriate arrangement of 
layers in the multilayer cylinder. Afterward, a thick hollow FG cylinder with finite length subjected to impact 
internal pressure was presented and investigated the time histories of two dimensional wave propagation and 
stresses and displacements (Asgari et al., 2009). 

There are some works related to free vibrations of FG cylinders. Loy et al. (1999) and Pradhan et al. (2000) 
investigated the vibration behavior of FG cylindrical shells based on the Rayleigh-Ritz method and love’s 
theory. It was revealed from the studies that the frequency characteristics of FG cylindrical shells are to those of 
isotropic shells.Reddy’s higher order-order shear deformation shell theory was used by Yang and Shen (2003) to 
investigate dynamic instability and free vibration of FG cylindrical panels under thermo-mechanical loads 
consisting of a periodically pulsating and static forces in axial direction.  

Then, Najafizadeh and Isvandzibaei (2007) using higher order shear deformation plate theory to study the 
vibration of thin FG cylindrical shells with ring supports. Next, Ansari and Darvizeh (2008) presented a general 
analytical approach to predict vibrational behavior of FGM shells. 

A number of works has been done related to buckling and stabilities of FG cylinders. Stability of FG 
conical and cylindrical shells under non-periodic impulsive loading was performed by Sofiyev (2003, 2004). In 
addition, the stability of FG cylindrical shells under axial compressive load. Moreover, Kadoli and Ganesen  
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(2006) studied free vibration and linear thermal buckling analyses of FG cylindrical shells subjected to a 
temperature-specified boundary condition. 

Despite the fact that many studies on the vibration problems of the FG cylindrical shell have been 
published, the transient analysis of thin FG cylindrical shell under impulse loads have to be comprehensively 
studied. An efficient way for calculating the forced vibration responses can be obtained. Also, it can be used in 
the dynamic design and vibration control of the cylindrical shell. In this study, forced vibration of cylindrical 
shell made of functionally graded material is investigated by using the Rayleigh-Ritz method. 

 
Formulation: 

Consider a FGM circular cylindrical shell, with a mean radius a, thickness h, length L with cylindrical 
coordinate ሺݔ, ,ߐ  ሻ (Fig. 1). It is assumed that the mechanical properties of the shell is varied with a desiredݖ
change of the volume fractions of the two materials in between the inner and outer surfaces. The mass density ߩ 
and modulus of elasticity E are supposed to be in terms of a simple power law distribution and poisson’s ratio ߤ 
is supposed to be constant as follow (Matsunaga, 2008). 
 
ሻݖሺܧ ൌ ெܧ ൅ ஼ெܧ ௙ܸ, ሻݖሺߤ ൌ ,ߤ ሻݖሺߩ ൌ ெߩ ൅ ஼ெߩ ௙ܸ           (1) 
 
Where 

 
஼ெܧ ൌ ஼ܧ െ ,ெܧ ஼ெߩ ൌ ஼ߩ െ ,ெߩ ௙ܸ ൌ ሺ0.5 ൅ ௭

௛
ሻ௉               (2) 

 
where ܲ  0 is the power law index and െ݄/2 ݖ   ݄/2. Subscript C and M refer to the ceramic and metal 
constituents, respectively. The value of the power law index (P) equal to zero represent fully ceramic shell and 
infinite P, represent a fully metallic shell. For thin cylindrical shell, the strain-displacement relationships are 
given by Soedel (1981). 
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The relationships between strains and stresses are written by 
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Fig. 1: Geometry of functionally graded cylindrical shell and coordinates. 
 

Rayleigh-Ritz method with Hamilton’s principle will be utilized to determine the equation of motion of the 
FG cylindrical shell. Hamilton’s principle is written by 

 

׬ ሺܶߜ െ ܷሻ݀ݐ ൅ ׬ ݐܹ݀ߜ ൌ 0
௧మ

௧భ

௧మ
௧భ

,                (5) 
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where T, U, W are the kinetic energy, strain energy and work , ݐଵ and ݐଶ are the integration time limits, (0)ߜ 
denotes the first variation. The kinetic energy and strain energy and virtual work of a conical shell can be 
written as 
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where qଵ, qଶ and qଷ are the distributed load components per unit area along the ݔ, ,ߐ and ݖ directions and are 
assumed to act on the neutral surface of the shell. The units of qଵ, qଶ and qଷ are ሾN/mଶሿ.The distributed loads 
qଵሺtሻ, qଶሺtሻ are equal to zero and the FG cylindrical shell subjected to distributed radial load of qଷሺtሻ per unit 

area on a localized small patch bounded by െߞଵ ߐ  ଵand ሺ௅ߞ 

ଶ
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ଶ
൅  ଶሻ that they are written byܮ
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Fig. 2: Distributed load over small rectangular area. 
 

qଷ଴ is the amplitude. Substituting Eq. (9) into Eq. (8). Based on Kandasamy (2008), the work done by this 
load on the cylindrical shell is 
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For simply supported cylindrical shell, the boundary conditions at both ends can be written as 
 

ݒ ൌ ݓ ൌ ଵܰଵ ൌ ଵଵܯ ൌ 0           (11) 
 
at  x ൌ 0 and x ൌ L would be considered. In order to use the Rayleigh-Ritz method, the displacement 

should be expressed in terms of generalized coordinates: 
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where U, V and W are the displacement shape functions, and p, r, s are the generalized coordinates or modal 
coordinates. They are written by 
 
݌ ൌ ሾ݌ଵଵ, … , ,ଶଵ݌,ଵ௡݌ … , ,ଶ௡݌ ,௠ଵ݌ … ,  ௠௡ሿ்݌
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ܸ ൌ ሾ ଵܸଵ, … , ଵܸ௡, … , ଶܸଵ, … , ଶܸ௡, … , ௠ܸଵ, … , ௠ܸ௡ሿ் 
ܹ ൌ ሾ ଵܹଵ, … , ଵܹ௡, ଶܹ௡, … , ௠ܹଵ, … , ௠ܹ௡ሿ் 
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The principal mode shapes of cylindrical shells with simply supported boundaries can be expressed as: 
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where i and j are the wave numbers in the meridional and circumferential directions. Substituting Eqs. (6), (7) 
and (10) in terms of the displacement shape functions and generalized coordinates and into Eq. (5) and 
performing the variation operation in terms of p, r and s. Then, the equation of motion of the cylindrical shell 
can be obtained as 
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where M୲, K୲, Q and X the generalized mass matrix, stiffness matrix, forcing matrix and generalized coordinate 
matrix and written by 
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where ܯଵ, ,ଵܭ ଷ are the modal mass matrices andܯ ଶ andܯ ,ଶܭ … ,  ௤ଷ isܨ ଺are the modal stiffness matrices andܭ
the forcing matrice which are given in Appendix A. A solution of Eq. (17) is in the form 
 
ܺሺݐሻ ൌ ܺ଴݁ఒ௧            (19) 

 
Where ܺ଴ is the eigenvector and λ is the eigenvalue. Substituting Eq. (19) into the homogeneous differential 

equation of Eq. (17). Then the following standard eigenvalue problem can be found: 
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From Eq. (20) the eignvectors and eignvalues can be obtinethed. The imaginary parts of the eigenvalues are 

the natural frequencies of the FG cylindrical shell. Substituting Eq. (18) into Eq. (17) gives. 
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For zero initial conditions, the solution of equation (21) will be 
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and the transverse displacement at any point of the cylindrical shell is given by 
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The convolution integral in Eqs. (22)-(23) have been solved analytically for 4 kinds of  forcing functions. 
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Sine pulse (Fig. 3b): ܨሺݐሻ ൌ ൝
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Fig. 3: Considered pulse shapes. (a) Step pulse. (b) Sine pulse. (c) Triangular pulse. (d) Exponential pulse. 

 

׬ ሺ߬ሻܨ ݊݅ݏ ߱௜௝
௧

଴
ሺݐ െ ߬ሻ݀ఛ ൌ

ە
ۖ
۔

ۖ
ிబ௧భሾగۓ ௦௜௡൫ఠ೔ೕ௧൯ିఠ೔ೕ௧భ ௦௜௡ቀഏ೟

೟భ
ቁሿ

ሺగమି௧భ
మఠ೔ೕ

మ ሻ
, 0 ൑ ݐ ൑ ଵݐ

ிబ௧భగሾ௦௜௡൫ఠ೔ೕ௧൯ା௦௜௡ ఠ೔ೕሺ௧ି௧భሻሿ

ሺగమି௧భ
మఠ೔ೕ

మ ሻ
, ݐ ൐ ଵݐ

                  (24b) 

 

Triangular pulse (Fig. 3c): ܨሺݐሻ ൌ
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Exponential pulse (Fig. 3d):  

 
ሻݐሺܨ ൌ ଴݁ି௔௧,                                                       0ܨ ൑  ݐ

 

׬ ሺ߬ሻܨ ݊݅ݏ ߱௜௝
௧

଴
ሺݐ െ ߬ሻ݀ఛ ൌ

ە
ۖ
۔

ۖ
ۓ

ிబሾఠ೔ೕ௘షೌ೟ା௔ ௦௜௡൫ఠ೔ೕ௧൯ିఠ೔ೕ ௖௢௦൫ఠ೔ೕ௧൯ሿ

ሺ௔మାఠ೔ೕ
మ ሻ

, 0 ൏ ݐ ൑              ଵݐ

ிబሾ௘షೌ೟భሺఠ೔ೕ௖௢௦ ఠ೔ೕሺ௧ି௧భሻି௔ ௦௜௡ ఠ೔ೕሺ௧ି௧భሻሻሿ

ሺ௔మାఠ೔ೕ
మ ሻ

 െ                  

ிబሾఠ೔ೕ ௖௢௦൫ఠ೔ೕ௧൯ି௔ ௦௜௡൫ఠ೔ೕ௧൯ሿ

ሺ௔మାఠ೔ೕ
మ ሻ

, ݐ ൐  ଵݐ

               (24d) 

 
RESULTS AND DISCUSSION 

 
The forced vibration responses of FG cylindrical shell with two simply supported boundaries are computed. 

The structural parameters of the FG cylindrical shell sample are: ܽ ൌ 0.4 m and ܮ ൌ 0.4 m. qଷ଴ is the amplitude 
of the impulse loads that equal to 4.0 MPa. It is assumed that the load applied in the radial direction over a small 
rectangular area: lଶ ൌ 0.01m , ζଵ ൌ  5.062଴. The power of exponential pulse is a=350. For this study, the 
duration of dynamic loads is chosen same as the natural period of the metal cylindrical shell. By numerical 
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calculation, it is found that the first 27 terms of Eq. (23) are sufficient to have enough accuracy. The 
displacement in the Z directions of the middle surface of FG cylindrical shell at position ሺL/2, 0ሻ varying with 
time are shown in Figs. (6-7).  

From Figs. (8), it is observed that there is a good agreement between the present method and finite element 
method. It is clear that the maximum radial deflections obtained by the two methods are approximately 
identical. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Time response of center point deflection w for various power law indexes (P) under: (a) Step Pulse (b) 
Sine Pulse. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Time response of center point deflection w for various power law indexes (P) under: (c) Triangular Pulse 
(d) Exponential Pulse. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Comparison of center deflection w with Finite Element Method under: (e) Step Pulse (f) Exponential 

Pulse. 



Aust. J. Basic & Appl. Sci., 5(12): 757-765, 2011 

763 

 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 9: FEM model for cylindrical shell. 
 

The material properties used in the present study is:  
Metal (Aluminum, Al): EM ൌ 70 GPa, ρM ൌ 2710 kg/mଷ, μ ൌ 0.3 
Ceramic (Almina, AlଶOଷ): EC ൌ 380 GPa, ρC ൌ 3800 kg/mଷ, μ ൌ 0.3  

 
It is clear from Fig. (6-7) that the largest deflection happen for metal (p= infinity) under step pulse because 

the area below the load–time curve is greater in comparison with others pulses. When power law index (P) 
increases, the corresponding time response also increases. The motions of displacement under triangular pulse 
are similar to the sine pulse. In addition, the maximum radial deflections of present method very close to finite 
element method (Fig. 8). The minimum deflections in comparison with other pulses happen under triangular 
pulse. 
 
Appendix A: 
 

The expressions of the modal mass, modal stiffness and forcing matrices in Eqs. (18) are given by 
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