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Abstract: Homotopy perturbation method is an efficient method for solving nonlinear equations. But
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INTRODUCTION

Homotopy perturbation method (HPM) has first come to light by He (1998) and has been accepted as an
elegant and efficient tool for solving nonlinear equations (He, 1998; He, 1998; Babolian, 2009; Chowdhury,
2007; Chowdhury, 2009). In HPM an auxiliary equation, namely homotopy equation, is constructed using the
original equation under study. The homotopy equation contains an embedding parameter (we denote it by p)
and it uses an initial guess of the exact solution to start an iterative-like procedure to hopefully converge to
the desired solution. Actually homotopy equation is a convex combination of the original equation, and another
(usually closely related) equation which has the chosen initial guess  as one of its solutions. we consider the
equation Au = 0, where A is a nonlinear operator and u is the unknown function, then the homotopy equation
will be as follows: 

  (1)

where L is an auxiliary (and mostly linear) operator, this operator is chosen beforehand based on some
knowledge about the equation under study. Together with the initial guess, the operator L, are the two key
tools of HPM. For p = 0, the above homotopy equation is just a quite simple equation based on the operator
L, and for p = 1, we have the original equation. Assume that the solution of the homotopy equation could be
represented as u = u0 + u1p + u2p

2 + … . As p ÷ 1 the homotopy equation converges to the original equation,
so we expect  u = u0 + u1p + u2p

2 + … to converge to the solution of the original equation when p ÷ 1.
This is, more or less, the common terminology which is use by almost all authors for using and applying

homotopy perturbation technique.
Considering the homotopy equation, one can easily find out that choosing L and uo will determine the

homotopy equation completely, so the HPM is restricted to just choosing appropriate L and uo. In this paper
we would present some general rules for suitable choosing these parameters. In section 2, after a short review
on the approaches by other authors, guiding rules are presented and discussed. Section 3, applies the suggested
rules to some differential equations (partial and ordinary) to verify its efficiency.

2- Some Suggestions for Applying HPM:
Studying the method we understand that, the idea is straightforward, but every one has solved it's own

problem, heuristically, using some tricks. Although this show the flexibility of the method, a beginner confronts
problems using it. Perusing most of the equations that have been solved by homotopy perturbation method,
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it seems that one simple way to start the homotopy perturbation method is to choose different L and uo'S and
test them to find the most accurate one.

To have a review on how authors use HPM for solving differential equations, consider the following
example (Babolian, 2009).

Example 1: 
Consider the time-dependent Emden-Fowler equation:

with the initial condition                       and boundary conditions                           and
                                                                                                    

Let's choose                            and      as used by Chowdhury and Hashim  (2007).  This  gives
                                                  
the homotopy equation as follows:

 

Using the expansion                                       and equating to zero the coefficients of powers
                                                                   
of p, we have the following sub equations:

 

   (2)
Subsequently solving the above equations we have:

   (3)

So, the final solution is                                                                                 which
                                                                                                            
leads  to  the  closed  form                       that is the exact solution. In this equation we have  so manysin( ) 2( , ) tu x t e x 
choices for L such as:
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In the same way there are different choices for u0. Here there are two basic questions:
Why do the authors choose these L and u0? Do other possible choices have the same results?
The answer of the second question is negative, this can be easily find out by perusing
other choices for L. But no body have tried to answer the first question.

We can find out some points from the previous example, or any other equation that has been solved by
HPM:

There is no general way to find the best L and  to start the homotopy perturbation method.
Moreover all of the authors that used HPM for solving PDE's and ODE'S, apply the initial/boundary

conditions to the first element (v0) of the final solution (u = v0 + v1 +...), and vanish these conditions for other
elements (vi, I = 1,2...). For instance consider the above example, here the boundary conditions for the main

solution is,                  and           . In the sub equations (2), the authors assigned these conditions assin( )(0, ) ty t e (0, )xy t
follows,

 
and

 
Here we present some suggestions for applying the homotopy perturbation method to differential and

system of differential equations.

Consider the differential equation. A(u)-f(r)=0 with the appropriate initial/boundary conditions, in almost
all cases the homotopy equation is constructed as follows:

 
By expanding                                      and equating to zero the coefficients of powers ofp, we

                                                         
have the sub equations:

 
Applying the initial/boundary conditions to v0 and vanishing them to other elements, is the straightforward

way to solve sub equations in HPM. Moreover one obvious solution for the first sub equation is v0 = u0.
We have to choose L and u0 based on our experience. Moreover, even if we approximate the solution, i.e.

    still initial/boundary conditions are valid for the approximate solution.
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Our suggestion is to construct the homotopy equation as:

Here we have the following sub equations:

So we do not choose initial guess v0 = u0 we find v0 by solving the first equation. Moreover from the
above discussion it's obvious that homotopy equation is constructed based on L. So if we choose L the
homotopy equation will be identified. The following rules are suggested for choosing L.

Rule 1:
L must depends on the main equation, but not necessarily a part of that. The approximate solution of the

equation is u • v0 + v1 + ... vn, that vi's are the solutions of the above sub equations. These sub equations are
completely based on L, so it is natural to choose L, based on the main equation. 

Rule 2:
L must be easy-to-solve.
As we know in HPM we replace a nonlinear equation with infinite number of linear equations. So the

method is useful if those sub equations be easy-to-solve. 

Rule 3: 
It is better to choose L based on initial/boundary conditions of the main equation.

Rule 4:
Sometimes we get better results by assigning initial/boundary conditions not in classic way(applying them

to and vanishing them for other elements). We will discuss these rules with details by some examples in next
section.
In homotopy equation, for p = 1. we have

 
so it seems that for any choice of L the final result will be the same. But this is not true, we can see from
different examples that L, has an essential role in convergence of the solution of HPM to the main solution.

As we mentioned before HPM has been used for solving systems of equations. Studying previous works
on systems of equations, we could find out that constructing homotopy equations in a system of equations are
just the same as for single equations. Consider the following system of differential equations:               

                                                          (4)

with suitable initial/bounary conditions. In classic view homotopy equations are constructed as follows:

(1-p) L1 u1 + p(A1 (u1 ,… , un)- f1 (r)) = 0,
 
(1-p) L2 u2 + p(A2 (u1 ,… , un)- f2 (r)) = 0,

!

(1-p) Ln un + p(An (u1 ,… , un)- fn (r)) = 0,   (5)
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where Ai = Li + Ni, for i = 1, 2, … , n.
Now by assumption ui  = ui0  + ui1 p + ui2 p2  + … , for i = 0, 1, 2, … , and equating to zero the

coefficients of powers of p. in the above equations will be find step by step. In the first step ui0's will be
identified, and so on.

It is worth mentioning that in the proposed way, we solve equations in each step from the first one to n-th
equation. It means that in any step k, previous elements have been determined, for example in the third
equation, u1k, u2k are obtained before, so we can use them in this step. This fact guides us to propose the
following system of homotopy equations:

(1-p) L1 u1 + p(A1 (u1 ,… , un)- f1 (r)) = 0,
 
(1-p) L2 (u1, u2) + p(A2 (u1 ,… , un)- f2 (r)) = 0,

!

(1-p) Ln (u1, un) + p(An (u1 ,… , un)- fn (r)) = 0,   (6)

In any step k, we solve the equations of (6) sequentially. Solving the first equation we get u1k , so in the
next equation (1-p) L2 (u1, u2) + p(A2 (u1 ,… , un)- f2 (r)) = 0, the only unknown is  that can be evaluate by
solving a linear equation, and so on. In the above system for homutopy perturbation method we use the
property of HPM and system of equations in the same time.

3- Examples:
3.1  Reaction-diffusion Equation:

The one-dimentional time-dependent reaction-diffusion equation is of the following form (Sami Bataineh,
2007):

wt (x,t )= Dwxx (x, t) + q(x, t)w (x, t),                (x, t) 0 ú2

where                         and  is the concentration, q(x, t) is the reaction parameter, and  D > 0  is the
2

2
,t xx

w w
w w

t x

 
 
 

diffusion coefficient.
The initial and boundary conditions are

w(x.0)=g(x),  w(0,t)=f0(t),  

wx (0, t) = f1 (t),        x, t 0 ú

Reaction-diffusion equations describe a wide variety of nonlinear systems in physics, chemistry, and
engineering (Button, 1998; Cantrell, 2003; Grindrod, 1996; Smoller, 1994). Here we solve some special cases
for q(x,t) == const. and q(x, t) = 2t.

3.1.1  q(x,t)=const:
Let

q(x,t) = -1,   D = 1,  g(x)= e-x + x

f0 (t)= 1,   f1 (t)= e-t - 1,

so the equation will be wt = wxx - w, with the conditions w(x, 0) = e-x + x, w (0, t) = 1, and wt (0,t) = e-t -
1, for x,t 0 R. In this case the equation is linear and we can choose any part of the equation as L except the
part that contains wt and wxx or  w and wxx simultaneously, because in these cases L is not easy to solve. So
by Rule 2, we have the following choices for L:

wt , - wxx , wt + w.
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In this equation we have initial and boundary conditions. If we use the initial condition, then by Rule 3,
we have to choose wt + w or wt as L. Moreover since wt + w in comparison with , is more dependent on the
main equation, by Rule 1, L must be wt + w. On the other hand, with the boundary conditions, we have only
one choice, -wxx. In the following we solve the homotopy equation in the above mentioned cases.

Case 1:
Let L = wt + w, with the init iril condition w (x, 0) = e-x+ x. Here the homotopy equation will be as

followes:

H(w,p) = (1 – p)(wt + w) +p(wt + w - wxx) = 0,

or,

H(w,p) = wt + w - pwxx = 0

Let: 

w = w0 + w1p + w2 p2 + … .   (7)

be the solution of equation (6). Now by the assumptions w2 (x, 0) = e-x + x and w1 (x, 0) = w2 (x, 0)=...=0
the initial condition for the final solution (w = w0 + w1 + w2 + ...) holds. Using (6) along with (7), one has:

(w0t + w1t p + w2t p2 + ...) + (w0 + w1 p + w2 p2 + ...) - p (w0xx + w1xx p + w2xx p2 + ...)=0   (8)

where                             .
2

2
,i i

it ixx

w w
w and w

t x

 
 

 

Equating to zero the coefficients of the powers of p in (8), we have the following sub equations:

w0t+ w0 = 0                                    w0 (x ,0) = e-x + x, 
w1t + w1 - w0xx = 0 ,                          w1 (x ,0) = 0 , 
w2t + w2 - w1xx =0 ,                           w2 (x ,0 ) = 0 ,  
!

which imply that:

0

1

2

2

( , )

( , )

( , )
2

t x t

t x

t x

w x t e e e x

w x t te e

t
w x t e e

  

 

 

 







It can be shown by induction that.,                        . Consequently:( , )
!

n
t x

n

t
w x t e e

n
 

0 1 2

2

...

1 ...
2

t t x

t t x t

t x

w w w w

t
e x e e t

e x e e e

e x e

  

  

 

   

 
     

 
 

 

which is the exact solution of the equation.
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Case 2:
Let w = - wxx boundary conditions, w(0,t) = 1, wx (0, t) = e-t -1, so the homotopy equation will be as

follows:

H(w, p) = (1-p) (- wxx)+ p (wt + w- wxx) = 0

or

H(w, p) = - wxx + p (wt + w) = 0   (9)

with the boundary conditions

Let, w = w0 + w1 p + w2 p2 +... (10)

so by the assumptions w0 (0,t) = 1 ,w1 (0,t) = w2 (0,t) = … and w0x (0,t) = e-t - 1, w1x (0,t) = w2x (0,t) = ...
= 0 , the boundary conditions for w holds. By (9) and (10), we have: 

- (w0xx + w1xx p + w2xx p2 + …) + p ((w0t + w1t p + w2t p2 + ...) + (w0 + w1 p + w2 p2 + ...)) = 0 (11)

with the above boundary conditions.
Equating to zero the coefficients of the powers of p in (11), we have the following sub equations:

- w0xx = 0                               w0 (0,t) = 1, w0x (0,t) = e-t -1 
- w1xx + w0t + w0 = 0                   w1 (0,t) = 0, w1x (0,t) = 0
- w2xx+ w1t + w1 = 0                    w2 (0,t) = 0, w2x (0,t) = 0 
!

which imply that,

 
2 3 4 5

0 1 21 ( 1), , ,...
2 3! 4! 5!

t x x x x
w x e w w      

one can show by induction that,                   .
2 2 1

(2 )! (2 1)!

n n

n

x x
w

n n



 


So: 
2 3 4 5

0 1 2 ... 1
2 3! 4! 5!

t t xx x x x
w w w w xe x xe e              

which is the exact solution.

3.1.2  q(x,t)=2t:
Let

q(x,t)= 2t, D=1, g(x)=ex, f0 (t) = et+t2), f1 (t) = et+t2)

So the equation will be wt = wxx + 2tw. with the conditions w(x,0) = ex, w(0,t) = et+t2), wx (0,t) = et+t2), for
x, t 0 ú

In this case the equation is again linear. So we have four choices for an easy-to-solve L (rule 2):

-wxx,  wt,   -2tw, wt - 2tw, 

If we use the initial condition, we have to choose wt or wt - 2tw, as L (rule 3). Moreover since wt -2tw,
in comparison with wt is more dependent on the main equation, by rule 1, L must be wt -2tw.

On the other hand, with the boundary conditions, we have only one choice for L, -wxx. In the following
we solve the homotopy equation in the above mentioned cases.

Case 1:
Let L = -wxx with the conditions, w(0,t) =wx (0,t) =. Here the homotopy equation is:



Aust. J. Basic & Appl. Sci., 5(12): 3280-3294, 2011

3287

H(w,p) = (1-p) (- wxx) + p(wt - 2tw- wxx) = 0.

Or

H(w,p) = - wxx+ p (wt- 2tw) = 0 (12)

Let

w = w0 + w1 p + w2 p2 + … , (13)

And wo (0,t) = wox (0,t) = et+t2, w1 (0,t) = w2 (0,t) = ... = 0, w1x (0,t) = w2x (0,t) = ... = 0.
Using (12) along with (13) one has:

- (woxx + w1xx p + w2xx p2 + ...) + p((wot + w1t + w2t p2 + ...) -2t(wo + w1 p + w2 p2 + ...)) = 0 (14)

with the above boundary conditions.
Equating to zero the coefficients of tlie powers of p in (14), we have the following sub equations:

- woxx = 0,                                wo (0,t) = et+t2), wox (0,t) = et+t2),
-w1xx + wot - 2t wo = 0,                  w1 (0,t) = 0, w1x (0,t) = 0,
-w2xx + w1t - 2t w1 = 0,                  w2 (0,t) = 0,  w2x (0,t) = 0,
!

which imply that:

 
2 2 2 2 2 2

2 3 4 5

0 1 1, , , ...,
2! 3! 4! 5!

t t t t t t t t t t t tx x x x
w e e x w e e w e e        

          
   

It can be easily shown that,                         . So the final solution will be:2
2 2 1

(2 )! (2 1)!

n n
t t

n

x x
w e

n n


  

   

2

2

0 1 2

2 3

...

1 ...
2! 3!

t t

t t x

w w w w

x x
e x

e e





   

 
     

 



which is the exact solution.

Case 2: 
Let L = wt -2tw, with the condition w(x,0) = ex. In this case the homotopy equation will be:

H9w,p) = (1-p) (wt-2tw) + p(wt - 2tw - wxx) = 0

or

wt - 2tw - p wxx = 0. (15)

Let

w = w0 + w1 p + w2 p2 + ... (16)

And w0 (x,0) = ex, w1 (x,0) = w2 (x,0) = ... = 0. 
Using (16) along with (15) one has:

(w0t + w1t p + w2t p2 + ...) -2t(w0 + w1 p + w2 p2 + ...) -p(w0xx + w1xx p + w2xx p2 + ...) = 0 (17)
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Equating to zero the coefficients of the powers of p in (17), we have the following sub equations:

w0t - 2t w0 = 0                                     w0 (x,0) = ex,
w1t - 2t w1 - w0xx = 0                               w1 (x,0) = 0, 
w2t - 2t w2 - w1xx = 0                               w2 (x,0) = 0,
!

solving the above equations we have:

2

2

2

0

1

2

2

,

,

,
2

t x

t x

t x

w e e

w e e t

t
w e e









by induction we have:                 
2

!

n
t x

n

t
w t e

n


So:

2

2

0 1 2

2

...

1 ...
2

x t

x t t

w w w w

t
e e t

e e 

   

 
    

 



That is the exact solution.

3.2 Helmholtz equation:
Helmholtz equation is of the form

L 2u+f(x,y)u=g(x,y) (18)

With the initial/boundary conditions:

u(0,y) = ψ1(y),ux (0,y) = ψ2 (y), u(x,0) = ψ3 (x), uy (x,0) = ψ4 (x)

f(x,y), g(x,y), ψ1 (y), ψ2 (y), ψ3 (x) and ψ4 (x), are known functions (Momani, 2006).
A special case of Helmholtz equation is of the form 

uxx + uyy = u (19)
               
with the conditions u(0,y) = y and ux (0,y)+ cosh (y).

Here we have three choices for easy_to_solve L (rule 2): u,uxx , uyy.
Up to the conditions (rule 3) we have just one choice Lu = uxx.
So the homotopy equation is as follows:

H(u.p) = (1-p) (uxx) + p(uxx + uyy-u) = 0 

Or

H(u.p) = uxx + p(uyy -u) = 0 (20)

with the conditions u(0,y) = y and ux (0,y) = y + cosh (y).

Let:

u = u0 + u1 p + u2 p2 + … (21)
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with the conditions u0(0,y) = y. u0x (0,y) = y + cosh(y), u1 (0,y) = u2 (0,y) = ... = 0 and u1x (0,y) = u2x x (0,y)
= ... = 0. 
Using (21) along with (20), one has:

(u0xx + u1xx p + u2xx p2 + ...) + p((u0yy + u1yy p + u2yy p2 + ...) - (u0 + u1 p + u2 p2 + ...)) =0,

with the proposed conditions for ui , i=0,1,2…. .
Equating to zero the coefficients of the powers of p in (22), we have the following sub equations:

u0xx = 0                           u0 (0,y) = y, u0x (0,y) = y + cosh (y)
u1xx + u0yy - u0 = 0                u1 (0,y) = 0, u1x (0,y) = 0
u2xx + u1xx - u1 = 0                u2 (0,y) = 0, u2x (0,y) = 0
!

by solving these equations we have

0

2 3

1

4 5

2

cosh( )

2 3!

4! 5!

w xy x y y

x x
w y

x x
w y

  

 
  

 
 

  
 



and by induction we have,                        .
2 2 1

(2 )! (2 1)!

n n

n

x x
w y

n n

 
   

So the final solution is: 

2 3 4 5

0 1 2 ... cosh( )
2 3! 4! 5!

cosh( ) x

x x x x
w w w w x y y yx y y

x y ye

   
             

   
 

Which is the exact solution.

3.3  RLW Equation:
Cconsider the RLW equation which reads (Ganji, 2006):

2

0 , 0
2

u
ut uxx x x t

 
     

 


with the initial condition 
Here for an easy to solve L we have two choices (rule 2),

 
2

,
2t

u
u x

 
 
 

but        , is not a right choice for the initial condition (rule 3). So we have only one choice, Lu = ut . The
2

2

u
x

 
 
 

homotopy equation in this case is               :
2

2 x

u
x uu

  
  

  

H(u,p) = (1-p) ut + p(ut - uxxt + uux) = 0

or

H(u,p) = ut + p(uux - uxxt) = 0 (24)
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Let:  u = u0 + u1 p + u2 p2 + ... (25)

and, u0 (x,0) = x, u1(x,0) = u2(x,0) = ... = 0. 
By (24) and (25) one can easily see that:

(u0t + u1t p + u2t p2 + ...) + p[(u0 + u1 p + u2 p2 + ...)
(u0x + u1x p + u2x p2 + ...) - (u0xxxt + u1xxxt p + u2xxxt p2 + ...)] = 0. (26)

Equating to zero the coefficients of the powers of p in (26), we have the following sub equations:

u0t = 0                                                             u0 (x,0) = x, 
u1t + u0u0x - u0xxt = 0                                              u1 (x,0) = 0,
u2t + u1u0x + u0u1x - u1xxxt = 0                         u2 (x,0) = 0,
u3t + (u0u2x + u1u1x + u2u0x) - u2xxxt = 0       u3 (x,0) = 0,
!

solving the above equations we have:

u0 = x, 
u1 =- xt = x(-t),
u2 = xt2 = x(-t)2,
u3 = -xt3 = x(-t)3, 
!

by induction we find out that, un = x(-t)n.
So the final solution is:

2 3
0 1 2 3 ... (1 ( ) ( ) ( ) ...)

1 `

x
u u u u u x t t t

t
             



which is the exact solution.

3.4 Laplace Equation:
Consider the two-dimensional Laplace equation (Sommerfeld, 1949), uxx + uyy = 0, subject to the boundary

conditions of,

u(0,y) = 0, u(π,y) = sinh(π) cos(y), u(x,0) = sinh(x), u(x,π) = -sinh(x). 

Let Lu = uxx, so the homolopy euation will be as follows:

H(v,p) = (1-p)(vxx) + p(uxx + uyy) = 0,

By the assumption u = u0 + u1 p + u2 p2 + …, we have the following sub equations:

v0xx = 0                      v0 (0,y) = 0, v0 (π,y) = sinh (π) cos (y),
v1xx = - v0yy                  v1 (0,y) = 0, v1 (π,y) = 0, 
v2xx = - v0yy                  v2 (0,y) = 0, v2 (π,y) = 0,
! (27)

the solution of the first equation is         cos(y)x. But Sadighi and Ganji in (2007) used the approximationsinh( )


sinh(π) • π and set v0 = xcos(y) which is not acceptable. It seems that there is no reason to use such an
approximation. Now we assign the boundary conditions in another way. By the Maclauran expansion of sinh(x)

at x=π , we have sinh(π) = π +           here we  assign  the  boundary  conditions  to  sub  equations  in
3

...,
3!




homotopy perturbation method as follows:
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(28)

0 0 0

3

1 0 1 1

5

2 1 2 2

0 (0, ) 0, ( , ) cos( )

(0, ) 0, ( , ) cos( )
3!

(0, ) 0, ( , ) cos( )
5!

xx

xx yy

xx yy

v v y v y y

v v v y v y y

v v v y v y y

 





  

   

   



The solutions of the above equations are:

(29)

0

3

1

5

2

( , ) cos( )

( , ) cos( )
3!

( , ) cos( )
5!

v x y x y

x
v x y y

x
v x y y









so the final solution will be                                                             , which  is  the  exact
3 5

0 1 2 ... ... cos( ) sinh( )cos( )
3! 5!

x x
u v v v x y x y

 
         

 solution of the equation.

Consider the two-dimensional Laplace equation, uxx + uyy = 0, subject to the boundary conditions of,

u(0,y) = sin(y), u(π,y) = cosh(π) sin(y). u(x,0) = 0, u(x,π) = 0.

Let Lu = uxx , so the homotopy equation will be as follows:

H(v,p) = (1-p) (uxx) + p(uxx + uyy) = 0,

By the assumption u = v0 + v0p + v2 p2 + …, we have the following sub equations in classic view:

v0xx = 0                              v0 (0,y) = sin(y), v0 (π, y) = cosh(π) sin(y), 
v1xx = - v0yy                          v1 (0,y) = 0, v1 (π,y) = 0, 
v2xx = - v1yy                          v2 (0,y) = 0, v2 (π,y) = 0,  
! (31)

the solution of the first equation is             , But  Sadighi and Ganji in (2007) used  the  approximation
cosh( ) 1




cosh(π) • 1 and set, v0 = sin(y), which is not acceptable. Now we assign the boundary conditions in another

way.  By  the  Maclauran  series  of cosh(x) at x = π we have cosh(π) = 1 +          here  we assign the
2

...,
2!




boundary conditions to sub equations in homotopy perturbation method as follows:

v0xx = 0,                                 v0 (0,y) = sin(y), v0 (π,y) = sin(y),

v1xx = - v0yy ,                            v1 (0,y) = 0, v1 (π,y) =     sin(y),
2

2!



v2xx = - v2yy ,                            v2 (0,y) = 0, v2 (π,y) =     sin(y),
4

4!



! (32)

The solutions of the above equations are:

0

2

1

4

2

( , ) sin( )

( , ) sin( )
2!

( , ) sin( )
4!

v x y y

x
v x y y

x
v x y y









(33)
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So the final solution will be: 

u= v0 + v1 + v2 + … =             sin (y) = cosh (x) sin(y),
2 4

1 ...
2! 4!

x x 
   

 

which is the exact solution of the equation.

3.5 System of ODEs:
Consider the following system of equation (Saadatmandi, 2009):

u''(x) + (2x-1 ) u'(x) + cos(π, x) v'(x) = f1 (x),
v''(x) + xu(x) = f2(x).         0 < x< 1, (35)

with the following boundary conditions. 

u(0) = u(1) = 0,                   V(0) = v(1) = 0, 

where f1(x) = - π2 sin(πx) + (2x-1) cos(πx) + (2x-1) cos(πx), and  f2(x) = 2 + xsin(πx). In this case we set L1u
= u'' + π2 sin(πx), and L2(u,v) = v'' + xu -2- xsin(πx), So the system of homotopy equations will be as
follows:

u'' + π2 sin(πx) = p {(2x-1) cos(πx) + (2x-1) cos(πx) - (2x-1)u'- cos(πx)v'}
v'' + xu -2- xsin(πx) = 0, (36)

so by the assumption u = u0 + u1 p +... and v = v0 + v1 p + ..., the sub systems of the above homotopy
system will be as follows:
first system:

u0'' + π2 sin(πx) = 0,                           u0(0) = u0 (1) = 0,
v0'' + xu0 - 2- xsin (πx) = 0,                   v0(0) = v0 (1) = 0,

solving the first equation of the first system we have, u0 = sin (πx), so the next equation will be,
v0''+ xsin(πx) - xsin (πx) - 2 = 0, with the boundary conditions, u0(0) = v0(1) = 0.
So the solution is v0(x) = x2 - x. 
second system:

u1'' = p {(2x-1) π cos(πx) + (2x-1) cos(πx) - (2x-1) u0' - cos (πx) v0'}, u1(0) = u1(1) = 0,  
v1'' + xu1 = 0      v1(0) = u1(1) = 0,

the solution of the above system is, u1 = 0, v1 = 0. 
Continuing this approach we have u1 = vi = 0, i > 1.
So the final solution is u = u0 + u1 + … = sin(π x) v = v0 + v1 + … = x2 - x. These are the exact solutions
of the above systems.

Example 3.1: Homogeneous 2-by-2 stiff system of linear ODE'S (Adomian, 1988; Sami Bataineh, 2007) is
as follows:

u' + k(1+ ξ) u + k(ξ -1) v = 0                               u(0) =1,

v' + k(1+ ξ) v + k (ξ - 1) u=0                               v(0) = 3, (37)

k and ξ are constants.

Let L1(u) = u' + k(1+ξ) u and L2(v) = v' + k(1+ξ)v. so the homotopy system will be:

u' + k (1+ξ) u = pk(1-ξ)v,                               u(0) = 1,
v' + k (1+ξ) v = pk(1-ξ)u,                               v(0) = 3, (38)
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By the assumption u = u0 + u1 p + ... and v = v0 + v1p + ..., we have the following
Sub systems,
first system:

u0' + k(1+ξ) u0 = 0,                       u0 (0) = 1 
v0' + k(1+ξ) v0 = 0,                       v0 (0) = 3 (39)

second system: 

u1' + k (1+ξ) u1 = k(1-ξ) v0,               u1 (0) = 0,
v1' + k (1+ξ) v1 = k(1-ξ) u0,               v1 (0) = 0, (40)

the solution of this system is,                        ,  and                       continuing this approach we(1 )
1( ) 3 (1 ) k tu t k te     (1 )

1( ) (1 ) k tv t k te    

have                               and                              .  We  can  show  by  induction  that: 
2 2

(1 )
2

[ (1 )]
( )

2
k tk t

u t e   


2 2
(1 )

2

[ (1 )]
( )

2
k tk t

v t e   


                          , for odd n, and                            , for even n, and (1 )3[ (1 )]
( )

!

n n
k t

n

k t
u t e

n
  

 (1 )[ (1 )]
( )

!

n n
k t

n

k t
u t e

n
  

 (1 )3[ (1 )]
( )

!

n n
k t

n

k t
v t e

n
  



for even n and                            for an odd n. The final solutions will be:(1 )[ (1 )]
( )

!

n n
k t

n

k t
v t e

n
  



0 1 2 3

2 3
(1 ) (1 )

...

[ (1 ) ] [ (1 ) ]
1 (1 ) ... 2 1 (1 ) ...

2! 3!
k t k t

u u u u u

k t k t
e k t e k t      

     

    
            

   

               . In the same way                    2 22 k t kte e  2 22 k t ktv e e  

From the examples we find out that the proposed approach can be useful for constructing the homotopy
equation. Of course we do not achieve the exact solution for any equation, but we have still an easy approach
for constructing the homotopy equation.
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