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Abstrac: A novel Neural Network Controller is proposed for locally stabilizing a class of multi-input 
nonlinear systems consist of a linear system together with saturated and rate limited actuators. No 
assumption is made on the stability of the linear system. The proposed design procedure replaces 
earlier recursive neural network learning algorithms with a simple optimization problem. In particular, 
we introduced a Riccati equation as the core of the design procedure so we could establish a bridge 
between intelligent control methods and classical methods. The aim of the proposed two-parameter 
optimization procedure is to maximize the stability region of the closed loop system under the 
nonlinear neural feedback law. We demonstrated via simulative evaluation. Simulation experiments 
show that the proposed neural network controller method achieves superior performance compared to 
methods in literature.  
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INTRODUCTION 

 
 In recent years, the study of linear saturated systems has been drawn an increasing attention, especially the 
case of globally or semi-globally stabilization of null-controllable systems (1995)(1999). In contrast, the 
problem of stability of the systems with both amplitude and rate limits imposed on the input signals has been 
studied only in a few papers (Lin, Z., 1997; Shewchun, J.M., E. Feron, 1999; Stoorvogel, A., A. Saberi, 1999). 
Note that the problem of a linear system constraint to rate limited actuator can be translated into the problem of 
a linear system with position limited actuator by means of a simple technique of augmenting inputs with states. 
 It is well known that for unstable linear systems with saturated inputs, it is impossible to have a global or 
semi-global stabilization method. A familiar technique to analyze the stability of saturated linear systems is 
what labeled 'anti-windup technique', which has been recently generalized for exponentially unstable systems 
(Teel, A.R., 1999; Romanchuk, B.G., 1999). On the other hand it is easy to show that any feedback gain that 
stabilizes the linear system, will stabilize the constrained system in a (finite) region around origin. So, one can 
formulate the problem of state feedback stabilization of unstable constrained linear systems as which feedback 
gain leads to the greatest domain of stability. An interesting result for planar anti-stable systems is that the 
domain of attraction of the closed loop system can be arbitrarily close to the null controllable region, which 
consists of initial states that we can bring to the origin in finite time with bounded control inputs under linear 
state feedback (Hu, T.L., Qiu, Z. Lin, 1998). Reference (Kapoor, N., P. Daoutidis, 1997) develops a procedure 
to locally stabilize a single-input linear system with input constraints and also to estimate the region of closed-
loop stability. Meanwhile, some authors used nonlinear feedback to stabilize linear systems (Teel, A.R., 1992; 
Sussmann, H.J., E.D. Sontag, Y. Yang, 1994). Indeed, it was shown that global asymptotic stability of 
constrained systems is not achievable by linear feedback (Fuller, A.T., 1969; Sussmann, H.J., Y. Yang, 1991). 
Reference (Sussmann, H.J., E.D. Sontag, Y. Yang, 1994) introduces a 'neural-network type' nonlinear sate 
feedback, which globally stabilizes constrained linear systems. The Reference (Hu, T., A.R. Teel, L. Zaccarian, 
2006) develops a systematic Lyapunov approach to the regional stability and performance analysis of saturated 
systems in a general feedback configuration. They assume the system has a well-posed algebraic loop and that it 
is local stability. In (Corradini, M.L., G. Orlando, G. Parlangeli, 2006), the authors proposed a time-varying 
sliding surface for the robust stabilization of linear uncertain SISO plants with saturating actuators. An 
extension of the linear quadratic Gaussian control method to systems with saturating actuators and sensors was 
obtained in (Gokcek, C., 2006). The solution was given in terms of standard Riccati and Lyapunov equations. 
The state feedback gain-scheduled controller is used for linear parameter-varying systems with saturating 
actuators in (Montagner, V.F., et al., 2007). 
 In (Rouhani, M., M.B. Menhaj, 2001), We have presented an algorithm to specify the weights of a neural 
network controller for linear saturated systems, which have further developed to consider hysteresises (Rouhani, 
M., M.B. Menhaj, 2002). The main objective of this paper is to further develop those papers and presents a 
'Neural-Network type' nonlinear feedback that stabilizes general linear systems with the position and rate limited 
actuators. The rate limited actuators are studied much less than position limited actuators, although the rate limit 
is crucial for stability of closed loop systems. Here, we consider a multi-input linear system, which could be 
stable, unstable or anti-stable. A direct design procedure to specify weights of a two-layer neural network type 
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controller will be presented. We begin with the hypothetical problem of globally stabilization of a linear 
(unconstrained) system via neural network controllers. It is obvious that this problem by itself has no practical 
importance, but we will use the results obtained, to locally stabilize a linear system with saturated actuator. 
Those results has been published in (Rouhani, M., M.B. Menhaj, 2001), but repeated 
  

 
 
Fig. 1: Structure of hypothetical problem of stabilization of a linear system via nonlinear feedback. 
 
 here to keep the paper self-contained. Finally, we present a new nonlinear feedback law that stabilizes a 
linear system with position and rate limited actuators with maximized domain of guaranteed stability. We will 
use a nonlinear feedback similar to the familiar linear quadratic feedback. Theoretical results are verified and 
compared with previous ones via some illustrative examples. 
 
Main Results: 
A preliminary Problem: 
 First, we develop a stable nonlinear controller for regulating linear systems. Note that we will use method 
developed hereafter for a realistic problem of saturated linear systems. Consider the configuration shown in 
Figure 1, in which a linear system is supposed to be globally stabilized by a nonlinear controller. The linear 
system is described by its state space representation 
 
 x Ax Bu               (1) 

And nonlinear feedback law by: 

2 1( )u W f W x                   (2) 

 

 In which A , B , 1W  and 2W  are matrices of size nn , mn  , np  and pm   respectively and 

x  is an 1n  vector of system states. )(f   is any nonlinear vector function, which its elements belong to 

sector of ],[ 1 , 10   , as defined below 

Definition 1[20]: 
 The continuous scalar function )(f  is said to belong to the sector of ],[  , if: 

2 2( ) ,f                     (3) 

                 
 
 The vector function ](.)(.)  (.)[)(  fff f  is said to belong to sector of ],[   if the component 

function (.)f  does so. From (2), the control signal )( 12 xWfWu  is bounded, if the activation function )(f   

is a bounded nonlinear function such as a sigmoid. As we seek for a global stabilizer, it is obvious that an 
unbounded control signal is required. However, this fact will be revised in the next sections for more realistic 
problems. 
Substituting (1) into (2) and rearranging the terms yields: 
 

2 1 2 1 1( ) ( ( ) )   x A BW W x BW f W x W x           (4) 

 
The following familiar quadratic Lyapunov function is chosen to derive the feedback controller,  
 

( )V x x Px               (5) 
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 where P  is a positive definite matrix, which will be specified later. Calculating the derivative of the 
Lyapunov function along the system trajectories yields: 

2

( )

2

V   
        1

x x Px x Px

x A Px x PAx f(W x) W B Px

  
          (6) 

 The goal is to select 1W  and 2W  matrices so that the overall system becomes globally stable. This is 

achievable provided that fA , defined below, is stable. 

 

1 2

1 1f


  

B BW

A A B W
             (7) 

 We aim to choose 1W  and 1W  matrices such that fA  became stable (Hurwitz).  fA  is stable if and only 

if the following Lyapunov equation has unique solution for P , given some 0Q  : 
 

f f   A P PA Q              (8) 

 
Equation (6) can be rewritten as: 
 

1 1 1

1

1 1

( ) 2[ ( ) ]

( )
2   ( 1)  ( )  ( )

p
i

i i

V

f



     

       1i 1i

x x Qx f W x W x B Px

w x
x Qx x w b Px

w x



        (9) 

 

 In the above, i1w  stands for the ith row of 1W  matrix and i1b  denotes the ith column of 1B . Note that 

xw i1  and Pxb i1
  are scalar quantities. By definition 1, we can have the following inequality constraint for the 

function )(f : 

 
( )

1,
f y

y R
y

                            (10) 

 

 Now we are at the position to introduce the first key point of our design procedure. We choose 1W  as 

 
1

1 1
  W R B P                         (11) 

 

 where 0},,{diagR  prr 1  is an arbitrary diagonal matrix. To make the overall system stable, we 

must have 
 

1

1

( )
2 (1 )*

 ( )  ( ) 0

p

i

i

f

r





  

  

 1i

1i

1i 1i

w x
x Qx

w x

x Pb b Px

                     (12) 

 
 By (10) all terms in summation are positive; hence, the above condition is equivalent to: 
 

12(1 ) 0ir      1i 1ix Qx x Pb b Px                       (13) 

 
 This yields the following matrix inequality 
 

2(1 )    1
1 1Q PB R B P 0                        (14) 
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 Substituting (7) and (11) in (8), leads to the following well-known Riccati equation: 
 

2     1
1 1A P PA PB R B P Q                       (15) 

 

 This equation, has unique solution for P , if the pair )BA,( 1 is completely controllable. For fA  to be 

stable, this solution has to satisfy (14). Now, the second key point is noted. By adding up the term 

PBRPB)1(2 1
1

1    to both sides of (15), we will have: 

 

2     1
1 1 1A P PA PB R B P Q                       (16) 

 
 With 
 

2(1 )     1
1 1 1Q Q PB R B P 0                       (17) 

 

 Again (16) is indeed a Riccati equation, which is equivalent to (15) and by choosing 0Q1   we can easily 

satisfy the inequality constraint (14). Therefore, we could begin by choosing a positive definite 1Q , solve (16) 

for P  and finally set Q  as 
 

2(1 )     1
1 1 1Q Q PB R B P                        (18) 

 

 The Riccati equation (16) yields a unique solution, if the pair )BA,( 1  is completely controllable (note 

that, this is a sufficient condition). 
So we may conclude the design method as follows: 
 

 Choose 2W  so that )BA,( 1  is completely controllable. Obviously, this requires the pair )( BA,  to be 

completely controllable.  

 Solve Riccati equation (16) for P , given 0Q1   and diagonal matrix 0R  . 

 Set 1W  by (11). 

 By this procedure, we are sure the resulting nonlinear feedback controller will be able to globally stabilize 
the linear system. 
 
Linear Saturated Systems: 
 Now, we extend this result to the cases in which we have actuators with limited operating range. This is a 
common problem with real systems because every physical device could be imposed to bounded inputs. Figure 
2 shows the new configuration. As one may easily see the overall plant represents a special kind of nonlinear 
systems. 
 Nonlinear saturated inputs can be modeled as: 
 

2 1( ( ( ))uu Sat W f W x                        (19) 

 
 Where )(Sat  is defined below: 

 

 
 
Fig. 2: A linear system with bounded actuator subject to nonlinear feedback. 
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1 , 1

( ) , 1

1 , 1

y

Sat y y y

y

 
 
  

                       (20) 

 
 Again, note that by imposing limited input signals to a linear system, only local stability could be achieved. 
So, we can relax the unboundedness property imposed on nonlinear feedback law discussed in the previous 
development and employ any squashing non-linearity, e.g. hyperbolic tangent. This implies that both )(f  and 

)(Sat  belong to the section ],[ 10 . That is, in addition to equations (1) and (2), we have: 

 

u

u                          (21) 

1 ( ) 1f                             (22) 

 
 At this point before further proceeding, it might be helpful if we could justify why we came up with a 
nonlinear controller to make the system given in Figure 2 stable. Because one may raise the question: how about 
to augment the control nonlinearity into the plant and stick with a linear controller. Our answer is that the 
proposed controller structure allows us to improve the transient response of the closed loop system by 
employing different nonlinearities for )(f . 

 Due to local stability, system states must be restricted to:  
 

x

x                          (23) 

 
 Choosing the same Lyapunov function as in (5), for a stable overall system, it is necessary to have: 
 

1 2
1 1

2 1 2 1

2 1 2 1

      2         *

( ( )) ( )
      (1 ) 0

( )

pm

j ij
i j

ij j ij j

ij j ij j

V

u w

Sat w f w f

w f w

 

  

  

  

 i

x Qx

x w b Px

w x w x

w x w x



                     (24) 

 

 For an arbitrary diagonal mm   matrix 2W , select 1W  as: 

 
  1

1 1W PB R                         (25) 

 

 Here, we set 21 BWB u . In the light of Eqs. (20) and (23), we will have: 

 

2

1

( )
1

( )
1

Sat y

y

f y

y





  

  


                        (26) 

 
 From (24) and (26), we finally came up with the following inequality: 
 

2 12(1 )     1
1 1Q PB R B P 0                       (27) 

 

 In this case, instead of (16) we must solve the following Riccati equation for P : 
 

1 22      1
1 1 1A P PA PB R B P Q                       (28) 
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 For a given 2Ŵ , we begin by setting: 

 

2 2
2 2

1 ˆ
ŵ



W W                         (29) 

 

 One can easily check that (29) will satisfy (26). If we choose some values for 1 and 2  and continue the 

design procedure by solving (28) and obtaining 1W  from (25), we obtain the following upper limit for x : 

 

1

y
x




W

                         (30) 

 
where y is the solution of equation (31): 

 

1

( )f y

y
                          (31) 

 

 The best choice for 1  and 2 , which give the largest domain of stability, could be found by every 

optimization method. Then, the guaranteed domain of stability can be easily determined using the largest 

contour of the form kPxx'  ( k is a constant) constrained to x


x .  

 
Remark: 

  Note that the optimum domain of stability depends on R , 1Q and 2W . To study the effect of each of 

these parameters, one can rewrite (28) as: 
 

12
1

2 QPB   )WRW(   PB

PAPA




2

212 u                                                                                          (32) 
 

 Consider 2
1

2 WRW  as a single parameter and also note that s'  are free parameters which must be 

tuned during optimization. Therefore, recalling from the theory of linear quadratic optimal control, the absolute 

value of 2
1

2 WRW   is of no importance, but its relative values of entries, which could be interpreted as the 

relative importance of each of inputs, play much more important role. One can also interpret 1Q  in the same 

way. 
 The following algorithm summarizes the solution method: 
 
Algorithm 1:  

Inputs: A , B and u . 

Free parameters chosen by the designer: R , 1Q , 2Ŵ , 10 and 20 . 

1. Set 101    and 202   .  

2. Set 2
22

2
1 Ŵ)ˆ(W




w , 21 BWB u . 

3. Solve Riccati equation (28) for P . Set  PBRW 1
1

1   . 

4. Calculate x  from (30) and (31). Find guaranteed region of stability as the greatest contour of the form 

kPxx'  contained in x


x . 

5. Determine s'  such that x  is maximized.  

 
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Linear Systems With Position And Rate Limits: 
 Consider the linear system (1) together with the following constraints on the input signals: 
 

 
 
Fig. 3: A linear system with rate and position limited actuators subjected to nonlinear feedback. 
 

1, ,
,

i i

i i

u u
i m

u u








                        (33) 

 

 The objective of this section is to develop a design procedure that specifies 1W  and 2W , such that the 

overall system has greatest domain of attraction (see figure 3). 
 The first step is to augment the state of plant with the control as: 
 

    
       
     

a a a
m

0x A B
x , A , B

Iu 0 0
                      (34) 

 
 This leads to the following augmented system, 
 

a a a a x A x B u                          (35) 

 
 The control rate now appears as the system input and the original control is part of states of the system. So 
if there was no constraint on the amplitude of control signal and the only constraint was rate limit, we could 
employed directly the proposed design procedure of last section, Algorithm 1, for the augmented system. But 
when both rate and amplitude limits are to be satisfied, we need to modify this Algorithm. 
 Before proceeding, it is helpful to normalize constraints (33) to 1 . This is accomplished by means of an 
input scaling and a state transformation as: 
 

1 1

ˆ , ,

,

/ 0

0 /

i
i

i

m m

u
u

u

u u

u u



 



 
 
 
 
 
 

aT

1
aT a

aT

x Tx

A TA T

0

B




 

 



                      (36) 

 
 where 
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11/

1/ m

u

u

 
 
 
 
 
 

nI 0

T
0 

                       (37) 

 
 In the following, we will drop the subscript T and simply assume that all rate and amplitude limits are 
scaled to ±1. 
 We note that rate limit acts as a saturated input for augmented system (35) and the position limit represents 
indeed a bound on the state space. This suggests us employment of the Algorithm 1 with some modifications 
ensuring the boudedness of the input signal within its limits, is good enough to handle this problem. 
 As one can easily observe, by applying Algorithm 1 to a specified problem, we will get a bound on state 
space on which the overall system guaranteed to be stable. So what we need to do here is to compare this bound 

on the augmented state ax  with the position limit on the input signal. In step 4 of the Algorithm 1, one needs to 

calculate a bound ax  on the state variables ax  such that 1
a1i

a1i
xw

)xw(f
 for all ax aa xx . If 

this bound is less than the normalized position limit, i.e. 1ax , we have to choose the same bound for plant 

states: axx . But for 1
1W

y
, we may say that still we are allowed to increase ax  without losing 

the stability of the close-loop system. The following algorithm summarizes the results: 
 
Algorithm 2: 

Inputs: A  and B  

Free parameters chosen by the designer: R , 1Q , 2Ŵ , 10 and 20  

1. Augment inputs with state variables and normalize the rate and position limits to 1. 

2. Set 101    and 202   . 

3. Set 2
22

2
1 Ŵ)ˆ(W




w , 21 BWB u . 

4. Solve Riccati equation (28) for P . Set  PBRW 1
1

1   . 

5. Calculate ax  from (30) and (31). If 1ax , set axx  . Otherwise calculate 
1x

1u

W

W





y
x , where 

1xW  and u1W  are respectively partitions of 1W  associated with states and inputs. 

6. Let: 
7.  
 

 
   

x xu

xu u

P P
P

P P
          

 

 Where xP  and uP  are respectively nn  and mm   matrices. Find guaranteed region of stability as the 

greatest contour of the form kxPx' x  ( k  is a constant) contained in x


x . 

8. Determine s'  such that x  , which is a function of s'  is maximized.  

 

 Note that as 1 and 2  appear as multiplication to R  in (28) the absolute value of R  is of no practical 

importance. For problems with more than one input, the relative values of R  and 1Q  matrices may interpreted 

as similar with LQR problem for linear behavior of the system. The same may be said for 2Ŵ , as the actual 

value of 2W  depends on 2 which will be set by the procedure.  
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 As mentioned before the weight matrices 1W  and 2W  are of size np  and pm   respectively. The 

number of neurons has to be not less than the number of inputs pm   for pair )BA,( 1  to remain 

controllable. For linear behavior of the system, it is clear that more neurons makes no sense as 12 WW   is 

always nm  matrix. The authors believe that the activation function and the number of neurons may affect the 
transient performance of the system as example 3 below demonstrates it. However, our simulations do not show 
significant differences in performance when the number of neurons further increased.  
 
Simulations: 
 To illustrate the ability and performance of presented method, we perform some test simulations. 
 Example 1: By this example, we wish to have a comparison study of our methods and the ones given in 
Reference (Kapoor, N., P. Daoutidis, 1997). Consider the same single input system as in Reference(Kapoor, N., 
P. Daoutidis, 1997): 
 

0.5 1 0
, , 1

2 1 1
u

   
        

A b         

 

 For a linear feedback of 21 312 xxu  , it is found that for all initial values belong to 

}..,..:x{Ζ 20204040 210  xx , the stability of the closed loop system is guaranteed. 

We Applied the Algorithm 1 to this problem, with 1R , 22 I1Q , 222
ˆ

 IW , 110  and 120  . 

The new domain of guaranteed stability is as the ellipsoid shown in figure 4. The rectangular region in this 
figure shows the stability domain obtained in Reference (Kapoor, N., P. Daoutidis, 1997). Figure 5 
represents the results of a simulation where the system is stabilized with the proposed nonlinear feedback. 
As easily observed, the controller presented in Reference 9 fails to stabilize the system while our results 
could successfully make the overall system stable. 

 
Example 2:  
 In the above example, we considered a linear system with position limited actuators. In this example we 
will consider the following saturated and rate limited multi-input linear system: 
 

0 1 0 3
, ,

2 3 3 0

3 15
,

1 10

   
       
   

    
   

A B

u u
        

 
 Note that the linear system is anti-stable with both eigenvalues, i.e. +1 and +2, in the open right half-plane.  
Three cases are considered: both amplitude and rate limits are effective, only amplitude limits on actuators are 
effective or, the third case, only rate limits are effective. In the first case, we employed Algorithm 2 to 
normalized augmented system. For the later cases, we applied Algorithm 1 to normalized system and to 

normalized augmented system, respectively. In all cases, we choose 22 IR , 22 I1Q , 222
ˆ

 IW , 

110  and 120  . Figures 6 and 7 show the results. As one may expect, the best result in term of the 

smallest overshot and settling time is obtained when only amplitude limit is active. From Figure 7, it is seen that 
the input to the augmented system (at the right column) is highly oscillatory, while the actual input (at the left 
column) is very smooth and bounded. The bounds on the input (first and second rows, left column) and the 
bounds on the rate of change of inputs (first and third rows, right column) are visible in this figure, too. 
 
Example 3:  
 The objective of this example is to show the effect of different nonlinear functions, (.)f , used in the 

feedback loop on the transient response of the closed loop system. Consider the system given in example 2 when 
only amplitude limits on actuators are active. We employed three nonlinear functions in feedback loop: 
saturation function )(xSat  as defined above, sigmoidal function )(xSigm  

and an arbitrarily chosen piece-wise linear function )(xf3 : 
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 Figure 8 demonstrates a simulation result for these nonlinear functions. As it is seen from this figure, the 
fastest response is obtained by means of sigmoidal function, while saturation function gives the least overshot. 
 
Conclusion: 
 In this paper, a novel nonlinear feedback design method is presented to stabilize multivariable linear 
systems with both position and rate limited actuators. Stability of the closed loop system was guaranteed and the 
domain of attraction was estimated as well. No assumption is made on the stability of linear system, so that the 
theory could be applied to any stable, unstable or anti stable system. Some illustrative examples have been 
given. The results showed excellent performance and flexibility of the proposed design procedure in comparison 
with the recently cited methods in literature.  
 

 
 
Fig. 4: Phase plane of system in example 1. Doted line shows a trajectory of the closed loop system under 

nonlinear state feedback. 
 

 
 
Fig. 5: State profiles and inputs for system of example 1. 
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Fig. 6: State profiles of system in example 2. 
 

 
 
Fig. 7: Inputs(left) and their rates of change (right) for system in example 2. 
 

 
 
Fig. 8: State and inputs for system of example 3. 
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