Assessing Citation Relevance and Polarity through a Combination of Semantic and Syntactic Information

1Sangeetha Chamundeswari and 2G.S. Mahalakshmi

1 Department of Information Technology, Jawahar Engineering College, Affiliated to Anna University, Chennai 600093, Tamilnadu, India
2 Department of Computer Science and Engineering, Chennai 600025, Tamilnadu, India

Address For Correspondence:
V. Sangeetha Chamundeswari, Department of Information Technology., Jawahar Engineering College, Affiliated to Anna University, Chennai 600093, Tamilnadu, India.
E-mail: sangeetharam26@gmail.com

ARTICLE INFO

Article history:
Received 04 December 2015
Accepted 22 January 2016
Available online 14 February 2016

Keywords:
Bibliometrics, Citation count
Citation classification Sentiment analysis

ABSTRACT

Measurement of quality of research articles has received much attention in recent years. Number of citations that papers receive has become prominent in measuring research quality. Authors cite irrelevant articles to increase the article’s popularity. Incorrect citation practices can increase the citation count and give unfair credit to research papers. In this paper we propose a novel automated technique which first classifies whether the cited article is sensible or not using a similarity method that integrates the semantic relations between words, and their syntactic composition. Then relevant citations are classified as sentiment positive, sentiment negative or neutral by identifying the cue phrases around the cited area. The proposed method is evaluated on articles collected from reputed open access journals on informatics. Results show that integrating semantic and syntactic approach produces better results than the existing methods. The proposed approach can be generalized to analyse research articles from various journals

INTRODUCTION

Bibliometrics is the science of analyzing statistically written publications, such as books or articles. Bibliometric methods are used mainly in the field of library and information science, which includes informatics and scientometrics. Bibliometrics is also used to provide quantitative analysis of academic literature. Citation analysis and content analysis comes under bibliometric methodologies. Many research fields use bibliometric methods to explore the impact of their field, the impact of a set of researchers, or the impact of a particular paper. It has other applications, such as the development of thesauri, descriptive linguistics and evaluation of reader usage.

A citation is a reference to a published or unpublished source. Citations are an abbreviated alphabetic expression inserted in the body of an intellectual work for the purpose of acknowledging the relevance of the works done by others regarding the topic being discussed at the spot where the citation appears.

Citation analysis deals with the examination of the documents cited in research works. Its main application was originally information retrieval and analyzing the quality of research papers. Recent works show that they are used in bibliometrics for evaluating and mapping research works, measuring the production and dissemination of scientific knowledge and also for establishing the journal impact factor. Citation indices are the main source for citation analysis which is bibliographic databases that allow one to establish citation details such as which later documents cite which earlier documents, which articles have been cited most frequently and who has cited them.

Measuring quality of research is one of the trending topics in recent times. A number of bibliometric indicators are used to assess the quality of research outputs in the higher education sector worldwide. The most
common among these are indicators are the one based on journal impact factors, journal ranks and citations. Details of citation such as the presence and number of citations are frequently used to assess the influence of a particular article, author, journal or field of research. But it is registered that the numbers of citations do not necessarily correlate with article quality by Todd, Peter A and et al., (2010).

Studies have found that citation behavior is complex in itself. Why an article is cited or not cited is dependent on several factors. The advantage of using metrics for measuring quality of research papers is that they are objective and can be measured easily. However metrics alone cannot be completely relied on for measuring its relevance. Part of this challenge lies within using the citation index to capture research outputs.

A number of factors are involved to determine the citation of a paper. Citations depend on time, journal, field or authors. Time feature includes how recently the work has been done. The influential factors in journal are its prestige, accessibility, visibility and internationality. Field dependent features include specificity of topic and field of study whereas the author-reader dependent features include language of the article, social networks of the author, number of co-authors and prestige of the author.

Articles which are contentious or debatable also attract a lot of citations even though they may contribute little to science or might be cited due to methodological problems and are known as negative citations. These improper citations give unfair credit to research papers. Thus there is a need for a new method to eliminate irrelevant citations and a new technique to assess the quality of research papers.

Literature Survey:

The research accomplishment of individuals, groups and institutions are increasingly being quantified using bibliometric-based performance indicators referred by Todd, Peter A and Ladle, Richard J, Citations., (2008) and Adler, Nancy J and Harzing, Anne-Wil., (2009). Such metrics are popular because they are relatively objective, transparent and they are also quick and easy to calculate. They have their downside as underserving paper gets unnecessary boost in their citation counts which have no reflection on research to be credited.

Todd, Peter A et al., (2007) was the first to measure citation misconduct in the branch of ecology. They determined that approximately one-quarter of citations were ambiguous, empty (citations to secondary sources), or did not support the assertion at all.

Dupps, William J (2008) comments that citation is subjective to a human ideas and papers are not referred simply on academic appropriateness or merit by Bornmann et al., (2008). Numerous factors are known to affect the probability of a paper being cited, including the language used, the number of authors by Della Sala et al., (2008) plus their affiliations and status by Leimu, et al., (2009), the paper’s length and the significance of the results. There are also multiple issues in determining the precise number of cites a paper has accrued by Stergiou, Konstantinos I and Tsikliras, Athanassios.,(2006).

Some proactive measures are carried out to address citation malpractice, which includes authors signing a declaration stating their citations have been verified by Goldberg R et al.,(1993), or publishing errors that are spotted by readers by De Lacey et al.,(1985). Random checking of references for a new submission is also considered. If errors are found, the manuscript can be returned and the author asked to provide the relevant parts of all work cited in their paper. Any such procedure that might result in time-to-publish penalties or outright rejection should provide sufficient incentive for authors to check their work for citation accuracy.

Sentiment analysis of citations in scientific papers and articles is a new and interesting problem due to the many linguistic differences between scientific texts and other genres. Teufel, Simone et al.,(2006) worked on a 2829 sentence citation corpus using a 12-class classification scheme. The corpus has been annotated for the task of determining the author’s reason for citing a given paper and is thus built on top of sentiment of citation. The 12 classes were grouped into 3 categories in an attempt to perform a rough approximation of sentiment analysis over the classification.

Todd, Peter A and Ladle, Richard J.,(2008) proposed a novel automated technique, which classifies whether an earlier work is cited as sentiment positive or sentiment negative. This approach first extracted the portion of the cited text from citing paper. Using a sentiment lexicon they classified the citation as positive or negative by picking a window of at most five sentences around the cited place. The result showed that 80 per cent of the citations are positive and 20 per cent of the citations are negative.

Citing sources that are not relevant when cited only mislead the readers. It also rips the credit going to the actual contributors of work. To quantify citation fidelity in marine biology, Todd, Peter A et al., (2010) retrieved 198 papers from 2 recent issues of 33 marine biology journals and evaluated its appropriateness. It was discovered that the assertion was clearly supported by the citation in only 75.8% of cases, the support was ambiguous in 10.6% of cases and the citation offered no support to the original statement in 6.0% of cases. The remaining 7.6% of cases were classified as empty (citations to secondary sources). It was found that 1 in 4 citations in marine biology are inappropriate.

Abdi, Asad and Idris et al, (2015) proposed a method that integrates the semantic relations between words and their syntactic composition to find similarity between a sentence and a document. Database and sentence structure act as sources for semantic and syntactic processing. Similarity measure between two sentences is
obtained using a linear equation that combines the semantic and word order similarity. As a result, the proposed method is able to obtain high accuracy and improve the performance compared with the current techniques.

The particle swarm optimization (PSO) algorithm is a search algorithm that concentrates on population based stochastic information. The algorithm was inspired by the social behaviour of bird flocks or schools of fish. since its introduction in 1995, psO has drawn much attention and has been applied to the solution of optimization problems by Poli, Riccardo and Kennedy etal.,(2007).

Therefore finding the relevancy and sentiment of cites is necessary for evaluating research articles. A combination of semantic and syntactic similarity measure can be used to find the relevancy of cite. Sentiment of a citation could be identified with the cue phrases that are annotated to the cite.

Methodology:

The proposed first classifies whether the cited article is sensible or not using a similarity method that integrates the semantic relations between words, and their syntactic composition. Then relevant citations are classified as sentiment positive, sentiment negative or neutral by identifying the cue phrases around the cited area. The overall architecture of the proposed work is shown in Figure 1.

Data collection:

Articles for analysis are collected from reputed open access journals on info metrics. It consists of 9 volumes and 4 Issues per volume out of which 2700 articles are available for open access. These articles are downloaded using a crawler. The reference articles for the article analyzed are manually downloaded in pdf format

Data conversion and extraction:

Root paper and all its citing papers are indexed. First step is to convert all pdf files in dataset into text format. Pdf-to-text conversion tends to modify formatting style, making it difficult to parse the text. Individual sentences are parsed and noisy data is removed. Based on the format style of the citing paper a particular regular expression is executed to extract the reference. With the help of this reference we form another regular expression to extract cite of maximum 150 words from the citing paper. The extracted cite is used for further processing. A sample of the processed corpus is shown in Table 1.

![Table 1: Pre-processed documents.](image)

Fig. 1: Overall architecture.

Relevance computation

The cite text and the corresponding article are decomposed into a set of sentences. Then, the similarity measures between each sentence from cite and whole sentences from the source article text are determined using the composition of word order similarity and semantic similarity as shown in Figure 2.
Word set construction:
Given two sentences from source document and corpus document, a word set \(WS=\{WS_1, WS_2, \ldots, WS_N\}\) is created using distinct words from the two sentences, where \(N\) is the number of distinct words in word set. For each word \(W\) from sentence1, the root word of the word \(W\) is obtained through WordNet. If the root word does not appear in the WS, it is added to word set WS. The same process is repeated for Sentence 2. A sample word set for a pair of sentence is shown in Table 2.

<table>
<thead>
<tr>
<th>Word set set</th>
<th>For pair c1a4</th>
<th>Word set</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1 general form citation distributions heavily skewed small percentage highly cited papers large proportion low cited a4 reference distributions mildly skewed citation distributions year citation window highly skewed points median articles upper tail account citations distribution skew cite paper point article</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semantic similarity between words:
Semantic word similarity is used to create word order vector and semantic vector. Given two words \(W_1\) and \(W_2\), the semantic similarity between words is determined with the following steps:
1. Get root of each word using Word Net
2. Get synonym of each word using Word Net
3. Calculate the number of synonyms of each word
4. Calculate the Least Common Subsume (LCS) of two words and their length
5. Determine the similarity score between words using Eq. 1 and 2

\[
\text{IC}(w) = 1 - \frac{\text{log}_2(\text{max,} w)}{\text{log}_2(\text{Synset}(w))}
\]

\[
\text{SIM}(w_1, w_2) = \begin{cases}
\frac{2 \times \text{IC}(w_1, w_2)}{\text{max}^{\text{LCS}}}, & \text{if}(w_1 \neq w_2) \\
1, & \text{if}(w_1 = w_2)
\end{cases}
\]

where LCS stands for the least common subsume, \(\text{max,} w\) is the number of words in Word Net, \(\text{Synset}(w)\) is the number of synonyms of word \(w\), and \(\text{IC}(w)\) is the information content of word \(w\) based on the lexical database Word Net. A sample for word order similarity is shown in Figure 3.

<table>
<thead>
<tr>
<th>LCS (ARTICLE,CITATION)</th>
<th>communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM(ARTICLE,CITATION)</td>
<td>2-4</td>
</tr>
<tr>
<td>(\text{IC}(\text{ARTICLE}))</td>
<td>3 \times \frac{2-4}{3}</td>
</tr>
<tr>
<td>(\text{IC}(\text{CITATION}))</td>
<td>3 \times \frac{3}{3}</td>
</tr>
<tr>
<td>(\text{SIM})</td>
<td>0.4210526</td>
</tr>
</tbody>
</table>

Fig. 2: Relevance computation.

Fig. 3: Similarity between words.
Semantic similarity between sentences:

The semantic-vector approach is used to measure the semantic similarity between sentences. The semantic vector is constructed from the word set and the corresponding sentence.

The dimension of semantic vector equals the number of words in the word set. Each cell of the semantic vector corresponds to a word in the word set, and its weight is calculated using the semantic similarity between words from the word set and corresponding sentence. If the word W from the word set appears in the sentence S1, the weight of word W in the semantic vector is set to 1. If the word W does not appear in the sentence S1, then the similarity between the word W and all of the words in the sentence S1 is calculated as shown in Eq. 1 and 2. The weight of word W in the semantic vector is set to the highest similarity value. If there is no similarity value between word W and all of the words in the sentence S1, the weight of word W in the semantic vector is set to 0. A semantic-vector is constructed for each of the two sentences. A sample semantic vector is shown in Table 3. The semantic similarity is computed using the two semantic vectors. Eq. 3 is used to calculate the semantic similarity between sentences.

$$\text{Sim}_{\text{semantic}}(S_1, S_2) = \frac{\sum_{i=1}^{m} p_i \sqrt{\sum_{j=1}^{n} (w_{ij} - w_{ij}^*)^2}}{\sum_{j=1}^{n} \sqrt{\sum_{i=1}^{m} w_{ij}^2} \sum_{j=1}^{n} \sqrt{\sum_{i=1}^{m} w_{ij}^2}}$$

where $S_1 = (w_{11}, w_{12}, \ldots, w_{1m})$ and $S_2 = (w_{21}, w_{22}, \ldots, w_{2m})$ are semantic vectors of S_1 and S_2 respectively.

Word order similarity between sentences:

The syntactic-vector approach is used to measure word order similarity between sentences. The syntactic vector is constructed from the word set and the corresponding sentence.

The dimension of syntactic vector equals the number of words in the word set. Each cell of the syntactic vector corresponds to a word in the word set, and its weight is calculated using the semantic similarity between words from the word set and corresponding sentence.

$$\text{Sim}_{\text{word order}}(S_1, S_2) = 1 - \frac{|O_1 - O_2|}{|O_1 + O_2|}$$

where $O_1 = (d_{11}, d_{12}, \ldots, d_{1m})$ and $O_2 = (d_{21}, d_{22}, \ldots, d_{2m})$ are syntactic vectors of S_1 and S_2 respectively.

Table 3: Semantic vector.

<table>
<thead>
<tr>
<th>Word set</th>
<th>Semantic vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>[general form citation distributions heavily skewed small percentage highly cited papers large proportion low reference mildly year window points median articles upper tail account citations distribution skew cite paper point article]</td>
<td>C1. General form citation distributions heavily skewed small percentage highly cited papers large proportion low cited</td>
</tr>
<tr>
<td>1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.47999999927116394 0.0 0.6190476417541504 0.5789473652839661 0.4000000059604645 0.5531914830207825 0.4285714328289032 0.523809552192688 0.5 0.54545454617103577 0.5652173757553101 0.5777778029441833 0.0 0.4285714328289032 0.5929295970077515 0.0400000059604645 0.5</td>
<td></td>
</tr>
</tbody>
</table>

If the word W from the word set appears in the sentence S1, the weight of word W in the syntactic vector is set to the index position of the word in sentence. If the word W does not appear in the sentence S1, then the similarity between the word W and all of the words in the sentence S1 is calculated as shown in Eq. 1 and 2. The weight of word W in the syntactic vector is set to the index position of the word with highest similarity value. If there is no similarity value between word W and all of the words in the sentence S1, the weight of word W in the syntactic vector is set to 0. A syntactic-vector is constructed for each of the two sentences. A syntactic-vector is constructed for each of the two sentences. A sample semantic vector is shown in Table 4. The word order similarity is computed using the two syntactic vectors. Eq. 4 is used to calculate the semantic similarity between sentences.

$$\text{Sim}_{\text{word order}}(S_1, S_2) = 1 - \frac{|O_1 - O_2|}{|O_1 + O_2|}$$

where $O_1 = (d_{11}, d_{12}, \ldots, d_{1m})$ and $O_2 = (d_{21}, d_{22}, \ldots, d_{2m})$ are syntactic vectors of S_1 and S_2 respectively.

Table 4: Syntactic vector.

<table>
<thead>
<tr>
<th>Word set</th>
<th>Semantic vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>[general form citation distributions heavily skewed small percentage highly cited papers large proportion low reference mildly year window points median articles upper tail account citations distribution skew cite paper point article]</td>
<td>C1. General form citation distributions heavily skewed small percentage highly cited papers large proportion low cited</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 11 1 0 0 6 4 11 9 7 0 3 4 6 10 11 6 11</td>
<td></td>
</tr>
</tbody>
</table>

Weighted combination of the similarity measures:

The similarity measure between two sentences is calculated using a linear equation that combines the semantic and word order similarity. The similarity measure is computed as shown in Eq. 5.

Maximize

$$\text{Sim}_{\text{sentence}}(S_1, S_2) = \lambda \cdot \text{Sim}_{\text{semantic}}(S_1, S_2) + \mu \cdot \text{Sim}_{\text{word order}}(S_1, S_2)$$
where ϕ is the weighting parameter, that specifies the relative contributions to the overall similarity measure from the semantic and syntactic similarity measures. ϕ ranges from 0 to 1. If $\phi = 0.5$ the semantic and syntactic similarity measures are assumed to be equally important. Eq. 5 is optimized using Particle Swarm Optimization (PSO). Similarity values input to the PSO is as shown in Table 5.

Table 5: Similarity values.

<table>
<thead>
<tr>
<th>Word order similarity</th>
<th>Semantic similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1 a1 0.206641565170716</td>
<td>c1 a1 0.4164405149780775</td>
</tr>
<tr>
<td>c1 a2 0.5087547913309824</td>
<td>c1 a2 0.7391669057913946</td>
</tr>
<tr>
<td>c1 a3 0.328613779096192</td>
<td>c1 a3 0.4947681187271748</td>
</tr>
<tr>
<td>c1 a4 0.7387266431453528</td>
<td>c1 a4 0.8836725557637015</td>
</tr>
<tr>
<td>c1 a5 0.565017219573208</td>
<td>c1 a5 0.7269355252783872</td>
</tr>
<tr>
<td>c1 a6 0.5313005820517517</td>
<td>c1 a6 0.7264949422566171</td>
</tr>
<tr>
<td>c1 a7 0.718201234729651</td>
<td>c1 a7 0.320628184306582</td>
</tr>
<tr>
<td>c1 a8 0.5454545454545454</td>
<td>c1 a8 0.6968662815647122</td>
</tr>
<tr>
<td>c1 a9 0.5162205531531032</td>
<td>c1 a9 0.68587575460554278</td>
</tr>
</tbody>
</table>

Particle Swarm Optimization:

PSO is a computational method for optimizing (maximizing or minimizing) a problem which tries to improve a candidate solution in each iteration with regard to a given measure of quality.

PSO uses a swarm of Nsw particles and each particle i of the swarm has a position in the continuous n dimensional search space.

$P_i(t) = [p_{i1}(t), p_{i2}(t), ..., p_{in}(t)]$ \hspace{1cm} (6)

At each iteration, particle’s best position and velocity is calculated and recorded as

$p_{i\text{best}} = [p_{i1\text{best}}, ..., p_{in\text{best}}]$ \hspace{1cm} (7)

$v_{i}(t) = [v_{i1}(t), ..., v_{in}(t)]$ \hspace{1cm} (8)

The personal best position of each particle at iteration (t+1) is calculated using Eq.5.

At each iteration, global best position of the swarm is computed as in Eq.9.

$g_{\text{best}}(t) = \max\{f(p_{1}(t)), ..., f(p_{N_{sw}}(t))\}$ \hspace{1cm} (9)

The initial position and velocity is generated using Eq.10 and Eq.11.

$p_{ij}(0) = p_{min} + (p_{max} - p_{min}) \cdot r_1$ \hspace{1cm} (10)

$v_{ij}(0) = v_{min} + (v_{max} - v_{min}) \cdot r_2$ \hspace{1cm} (11)

where vmin and vmax are the minimum and maximum allowed velocity and where pmin and pmax are the minimum and maximum allowed position of the particle. r1 and r2 are two independent random numbers uniformly distributed within the interval [0,1].

At each iteration, particle’s position and velocity is updated using Eq.12 and Eq.13.

$v_{ij}(t+1) = w(t) \cdot v_{ij}(t) + \phi \cdot c_1 \cdot r_1 \cdot (p_{i\text{best}} - p_{ij}(t)) + \phi \cdot c_2 \cdot r_2 \cdot (g_{\text{best}} - p_{ij}(t))$ \hspace{1cm} (12)

$p_{ij}(t+1) = p_{ij}(t) + v_{ij}(t+1)$ \hspace{1cm} (13)

where w is the inertia weight that controls the influence of previous velocity on the current velocity and is calculated using Eq.14.

$w(t) = \frac{2 \cdot t}{t_{max}} - 1$ \hspace{1cm} (14)

where t is the current iteration, t_{max} is the maximum number of iterations, wmax and wmin are the starting and ending inertia weight values to control inertia.

An intermediate parameter than controls c1 and c2 is calculated as in Eq.15.

$\phi = \frac{(w+1) \cdot (w+1)}{2 \cdot w}$ \hspace{1cm} (15)

A sample particle position is shown in Table 6. Each particle has ‘n’ dimensions where each dimension stands for a pair of sentence formed between the source document and corpus. The dimensions will be initialized randomly in the first iteration as shown in Eqn.10. At each iteration the particle position will be updated using a velocity factor as shown in Eqn.12 and Eqn.13. Higher the value of a dimension in a particle denotes that the similarity between the corresponding pair of sentences is high.

Table 7 shows the fitness value of the particles. High values of pbest denote that the particle has found the more accurate results. The best particles fitness in a particular iteration is stored in gbest. From Table 6 and Table 7 it can be inferred that particle ‘n0’ has found the more accurate results and the fourth pair of sentence (c1a4 according the example in Table 1) is more relevant.
Table 6: Particle position.

<table>
<thead>
<tr>
<th>Particle</th>
<th>Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n0</td>
<td>0.7234619346475598 0.4755251247163597 0.57008084902278 0.9761345009479563 0.9093087645943803</td>
<td></td>
</tr>
<tr>
<td>n1</td>
<td>0.7046162277539745 0.9645898364676167 0.5702926497593203 0.8266843367661946 0.433102362551694</td>
<td></td>
</tr>
<tr>
<td>n2</td>
<td>0.036956148206992 0.84436817251778 0.89252358151916 0.80363613004505065 0.44587692393580145</td>
<td></td>
</tr>
<tr>
<td>n3</td>
<td>0.2215914606964777 0.34294608964804896 0.3160657260192097 0.50693157470008345 0.4603323591284786</td>
<td></td>
</tr>
<tr>
<td>n4</td>
<td>0.1082602138244662 0.2916627596393283 0.1213929866405286 0.30457036399074113 0.4876557865574714</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Fitness values.

<table>
<thead>
<tr>
<th>Fitness value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pbest0</td>
<td>1.4034770761811325</td>
</tr>
<tr>
<td>pbest1</td>
<td>0.9064468734123491</td>
</tr>
<tr>
<td>pbest2</td>
<td>0.8958459795155738</td>
</tr>
<tr>
<td>pbest3</td>
<td>0.4579094971172409</td>
</tr>
<tr>
<td>gbest</td>
<td>1.4034770671811325</td>
</tr>
</tbody>
</table>

Polarity classification:

Based on the cue phrases citations are classified into 12 categories [4] as shown in Table.8

To perform sentiment analysis the 12 categories are grouped into 3 categories as shown in Table. 9.

Table 8: Citation classification categories.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak</td>
<td>Weakness of cited approach</td>
</tr>
<tr>
<td>CoCoGM</td>
<td>Contrast/Comparison in Goals or Methods(neutral)</td>
</tr>
<tr>
<td>CoCo-</td>
<td>Author's work is stated to be superior to cited work</td>
</tr>
<tr>
<td>CoCoR0</td>
<td>Contrast/Comparison in Results (neutral)</td>
</tr>
<tr>
<td>CoCoXY</td>
<td>Contrast between 2 cited methods</td>
</tr>
<tr>
<td>PBas</td>
<td>Author uses cited work as basis or starting point</td>
</tr>
<tr>
<td>PUse</td>
<td>Author uses tools/algorithms/data/definitions</td>
</tr>
<tr>
<td>PModi</td>
<td>Author adapts or modifies tools/algorithms/data</td>
</tr>
<tr>
<td>PMot</td>
<td>This citation is positive about approach used or problem addressed (used to motivate work in current paper)</td>
</tr>
<tr>
<td>PSim</td>
<td>Author's work and cited work are similar</td>
</tr>
<tr>
<td>PSup</td>
<td>Author's work and cited work are compatible/provide support for each other</td>
</tr>
<tr>
<td>Neut</td>
<td>Neutral description of cited work, or not enough textual evidence for above categories, or unlisted citation function</td>
</tr>
</tbody>
</table>

Table 9. New Categories.

<table>
<thead>
<tr>
<th>Old categories</th>
<th>New categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak, CoCo</td>
<td>Negative</td>
</tr>
<tr>
<td>PMot, PUse, PBas, PModi, PSim, PSup</td>
<td>Positive</td>
</tr>
<tr>
<td>CoCoGM, CoCoR0, CoCoXY, Neut</td>
<td>Neutral</td>
</tr>
</tbody>
</table>

Evaluation:

Evaluation techniques:

In order to make inference about our proposed method we picked random citations and evaluated manually. The results are quantified using the following metrics.

Precision:

Precision determines the exactness of classification i.e., the percentage of tuples that the classifier labeled as positive is actually positive.

Precision = \(\frac{TP}{TP+FP} \)

Recall:

Recall determines the completeness of classification i.e., the percentage of positive tuples the classifier labeled as positive.

Recall = \(\frac{TP}{TP+FN} \)

F-measure:

F-score determines the harmonic mean of precision and recall.

\[F = \frac{2 \times Precision \times Recall}{Precision + Recall} \]
Performance analysis:

The relevance computation phase showed that 7.3% of the references are not cited. Out of the remaining 92.7% citations 76% citations are relevant, 14% citations are ambiguous (partial support) and 10% are irrelevant.

The results of sentiment analysis of the cited corpus are shown in Table 10.

<table>
<thead>
<tr>
<th>Measures</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>0.84</td>
</tr>
<tr>
<td>Recall</td>
<td>0.94</td>
</tr>
<tr>
<td>F-Score</td>
<td>0.89</td>
</tr>
</tbody>
</table>

The precision and recall values were improved considerably using this method. Using relevancy and sentiment of cite we can further check whether the earned citation of a research paper is worthy. By constructing a citation graph and pruning it by removing the irrelevant citation edges, the implicit and explicit citation count earned by a research paper can be calculated.

Conclusion:

We have proposed a novel automated technique which first classifies whether the cited article is relevant or not using a similarity method that integrates the semantic relations between words, and their syntactic composition. Then relevant citations are classified as sentiment positive, sentiment negative or neutral by identifying the cue phrases around the cited area. The proposed method is evaluated on articles collected from reputed open access journals on informatics. The proposed approach is evaluated using precision, recall and f-measure. The proposed method could be used by research scholars and expert panels for evaluating the journal articles.

REFERENCES

