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ARTICLE INFO ABSTRACT

Article history: Background: The spectral mixture analysis (SMA) enables thegifization of the
Received 26 July 2016 orbital images by estimating the proportions ofedént features inside a mixed pix
Accepted 21 September 2016 The great advantage of the SMA is to produce ridiedsults without the need for hi
Published 30 September 2016 spatial esolution images. SMA techniques have been useHeirBrazilian Amazol

rainforest to investigate the annual change in lamdr.Objectives: The objectives of
this paper were to evaluate the fitting of the dinspectral mixture models (LSMM

Keywords: consisting of multispectral (Advanced Land Imageryl hyperspectral (Hyperion) da

Endmember selection, ALI, Hyperion. to evaluate the influence of the number of bandbénLSMM fitting, and to compare
the fitting of the LSMM with a Multilayer PerceptioMLP) model.Results: The
Hyperion bands with the lowest correlation showkd tower values of the me
absolute error (MAE) and the use of three chanmefoved the fitting. The ILP
model showed fewer errors than the LSM@bnclusion: The results of this research
indicate that the fractions images can be impra¥atie hyperspectral data and 1
MLP model are employed. Thus, the use of the Hgpediata and the MLP network
highly recommended for evaluating the deforestatiothi®n Amazon Rainforest wit
SMA.

INTRODUCTION

Each type of land cover has a typical spectralaese. In the orbital images, the digital numbersl)
correspond to the average intensity of energy etftbor emitted by different targets of the surfdmesides th
atmospheric effects, within the tantaneous field of vision (IFOV) of the sensorliédsandet al, 2014). The
picture elements (pixels) may represent a singbe tyr multiple types of land cover spectral respotiisthe
pixels are large, this representation is likelydfer to more than one type and feature of a mpieel (Luet al,
2003; Tso and Mather, 2009).

The spectral mixture analysis (SMA) techniques ased to quantify the proportion of two or mu
components within a mixed pixel. Several technica@sinvolved in this approach, like linear spdatnature
models (LSMM), nonlinear spectrmixture models (NLSMM) and Multilayer Perceptronl(R) network (Wu
and Murray, 2003; Liu and W2005).

The project termed Monitoring of the Brazilian AmazForest by Satellite (PRODES) uses the SM,
obtain image fractions of the scene componentsetation, soil and shadow) in order to focus inforimaton
deforestation in one or two imag@3amareet al, 2013) The great advantage of the SMA is to producealpé
results without the need for high spatial resolutimages. PRODES, for example, utilizes the Lan@88ain
data.

Open Access Journal

Published BY AENSI Publication

© 2016 AENSI Publisher All rights reserver

This work is licensed under the Creative Commons Attribution International License (CC
BY).http://creativecommons.org/licenses/by/4.0

ToCite ThisArticle: Jodo Flavio Costa dos Santos, Sidney Geraldo &ilx#lloso, Lais Barbosa Teodoro Alves, José Médm&leriani,
Nilcilene das Gragas Medeiros., Influence of sggetsolution and performance of Linear and MuglaPerceptron modeln the spectral
mixture analysisAust. J. Basic & Appl. Sci., 10(14): 27-36, 2016




28 Jodo Flavio Costa dos Santesal, 2016

Australian Journal of Basic and Applied Sciencesl0(14) September 2016, Pages: 27-36

As the SMA is important to the Amazonian contexisitvery interesting to evaluate newapproaches. We
decided to investigate whether the hyperspectréh damd MLP model can improve the fraction images.
Predominantly, these fraction images are obtainéd mwultispectral data and the LSMM. The objectieéshis
paper were to evaluate the fitting of the lineaectpal mixture models (LSMMs) consisting of mulesgral
(Advanced Land Imager) and hyperspectral (Hyperdaiy, to evaluate the influence of the numberaoids in
the LSMM fitting, and to compare the fitting of th&MM with a Multilayer Perceptron (MLP) model.

MATERIALS AND METHODS

Two study areas located in the Itapud do Oeste aipatity, Ronddnia, Brazil (Fig. 1) were selectexnt f
this work. Study area | comprises 23.8 km2 and wlasted because it overlapsboth the Advanced Land
Imagery (ALI) and the Hyperion swath widthsand hesgait presentsthe three components (soil, vegatatid
shadow). This first area was used to study thecefié the spectral resolution on the spectral nmxtonodel.
The execution of the Multilayer Perceptron (MLP) dabrequired data from a RapidEye image (described
below). Thus, area Il was defined according toltive cloud cover from the RapidEye images availables
area totaled 60.4 kmz.

Products of the ALl and Hyperion sensors onboagd Earth Observation (EO-1) experimental satellite
were acquired on the Earth Explore website. Theygaare from May 27 2012 (path/row: 232/66).

Launched on November 21, 2000, the EO-1 was tkedatellite of the New Millennium Program (NMP)
under the National Aeronautics and Space Administta(NASA). This satellite mission was launched to
validate and to demonstrate the NASA’s new techgie®for a period of one year. Next, the missiontiowed
with the acquisition and distribution of the Hymerihyperspectral data and ALl multispectral datih a 16-
day revisit time.
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Fig. 1: Location of the two study sites (Area | and Ardnih the Itapud do Oeste municipality,Rondénia,
southwest Amazon.

The ALI sensor was designed to produce images cahfgmwith those of the ETM+ of Landsat 7 and is
considered a precursor of the OLI of Landsat 8. Ahé wavelength bands and the spatial resolutiorthef
multispectral bands (30 m) are similar to the ETMasring the absence of the thermal band (bandhé)ttze
spatial resolution of 10 m from the panchromatincbaOther novelties in this sensor include thremedbsal’, 4'
and 5' (Table 1) and a pushbroom scanning systessiiperior imaging quality of this sensor was dised by
Schowengerdt (2006). The scenes have dimensio8§ of 185 km and product L1R (Level 1 Radiometric)
images are available with 16 bits/pixel (Middlettral, 2013).

Hyperion is a 242-band hyperspectral sensor thaersothe spectral range from 356 to 2577 nm, at
approximately 10 nm intervals. In the L1R, 198 $p@dands radiometrically calibrated are proviggd7 for
the visible and near- infrared and 77-224 for thersvave infrared) (Table 1). This instrument po®s images
with dimensions of 7.5 x 100 km and 16 bits of caaktric resolution (Goodenough al, 2003).
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Table 1: Spectral characteristics of ALI and Hyperion seaso

Sensor Bands

A (nm) BAND ALI Hyperion*
480 - 690 PAN PAN B-14 - B33
421 - 433 - B8

433 - 453 MS-1’ B1 B9-B10

450 -515 MS-1 B2 B11-B16
515 - 525 - B17

525 - 605 MS-2 B3 B18-B25
605 - 625 - B26-B27
633 - 690 MS-3 B4 B28-B33
690 - 775 - B34-B42
775 - 805 MS-4 B5 B43-B45
805 - 845 - B46-B49
845 - 890 MS-4’ B6 B50-B54
890 - 1200 - B55-B57; B77-B105
1200 - 1300 MS-5’ B7 B106-B115
1300 - 1550 - B116-B140
1550 - 1750 MS-5 B8 B141-B-160
1750 - 2080 - B161-B-192
2080 - 2350 MS-7 B9 B193-B-219
2350 - 2396 - B220-B-224

* |Interval of calibrated bands covering the spdatrage (AL).

For area Il, besides the ALI data, a RapidEye im#ige2034914)acquired on August 29, 2012, wasluse
The RapidEye constellation includes five satelliiest provide 5 m pixel sized images after resamgplfive
spectral bands that encompass the intervals ofalplectromagnetic energy of blue (440-510 nnmgegr(520-
590 nm), red (630-685 nm), red edge (690—730 nm)rezar infrared (760-850 nm); radiometric resolutid
12 bits and daily (off-nadir) or 5.5 days (at nadavisit time (Tycet al, 2005; RapidEye, 2011).

The original data were converted into reflectanaseldl on equation 1. To convert the digital numbecs
absolute radiance values, the following relatiopshivere adopted: each Hyperion band of VNIR (1Gpahd
SWIR (71 to 242) was divided by its scale factoe.(i40 for VNIR and 80 for SWIR) (Goodenoughal,
2003); for ALI data, equation 2 was used and tligoraetric calibration coefficients were obtaineddhander

et al, (2009).
_ 1'l.’.LA.d2
P2 = Esun,.cos (63) @)

where:p; — planetary TOA reflectance; k& spectral radiance at the sensor’s aperture [ftthum]; d —
Earth-Sun distance [astronomical uniBBUN — mean exoatmospheric solar irradiance [Vfmmi']; and6, —
solar zenith angle [radians].

Ly = (G2 Qo = Qeatmin) + LMIN (2)
calmax—Qcalmin
where:L,— spectral radiance at the sensor’s aperture [f\siffum*]; LMAX, — spectral at-sensor radiance
scaled t0Q.qmax [W M?srium?]; LMIN, — spectral at-sensor radiance scale® {9, ,[W m? sripm?;
Qcarmax — Maximum quantized calibrated pixel value coroesiing to LMAX; [DN]; Qcqimin — Minimum

qguantized calibrated pixel value correspondingLdéiN,[DN]; and Q.,; — quantized calibrated pixel value
[DN].

Linear Spectral Mixture Model (LSMM):

TheLSMM assumes that the response expressed ixehipian additive function of the spectral resgons
expressed by each individual feature, proportignaleighted by the area it occupies in the pixelo(Bsd
Mather, 2009).

The LSMM was processed in the SPRING &oBtwaresystem (Camarat al, 1996). It was necessary to
change the file of the spectral _bands to implentleetspectral information of the ALI and Hyperiomsers.
The fraction images (mix) of the LSMM are processe&PRING with 8 bits and integer numbers. Thewefo
due to compatibility issues, the reflectance offtbat grid was multiplied by 255 in order to praguan integer
grid.

The LSMM is based on the premise that the spectispponse of each pixel in any wavelength can be
considered as the linear sum of the spectra oéticknembers (Powedit al, 2007). The model (equation 3) is
able to separate the constituents of each pix¢hefscene proportionally and to generate the tradtinages
(Quintanocet al,, 2013). Thus:
pi = Z?:l(aijxj) t e (3

where: p— spectral reflectance of a pixel in th& band; n- the number of endmemberg; — spectral
reflectance of 'endmember on'i spectral bandy; _theproportion of the component within the j-th pixend ¢
-error associated with the i-th spectral band.
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If the number of the endmembers is equal or lolwentthe number of spectral bands, the system ediin
equations derived from equation 3 is determined thedLSMM may be solved by the least squares method
(Shimabukuro and Smith, 1991). This approach aimmseducing the errors in the separation of the Ipixe
fractions.

Two restrictions are included in this model: (Igtbum of the component proportions of the pixel tnbes
equal to 1.0 and, (1) the proportions of the pixalust range between 0 and 1.0 to have physicahingeadn
SPRING, the use of the latest restriction is o@tioWhen this restriction is implemented, the pxalue in the
fraction image is obtained by multiplying the projians (between zero and one) by 255. If this et is not
utilized, the proportion values are scaled to tirege of 100 to 200 and the pixels with the negatblees or
values greater than one appear outside this rdngbe latter case, the number of pixels outsiderdnge of
physical meaning, observed in the image histogramiscates inadequate models or a poor definitibpure
pixels (Tso and Mather, 2009; INPE, 2015). Thuss thipe of analysis also facilitates the assessrottite
adequacy of the mixture model (Andersairal, 2005).

Two scenarios were used in this paper: the adopdioth non-adoption of the restriction 1. Without
adopting restriction Il, the pixels out of the remyf physical meaning were quantified. When thérim®on was
adopted, the mean absolute error (MAE) (Van de ¥ep2009) was calculated according to equation 4:

M oS agix
MaE, = Sl (f,"la’x’)| 4)
where: MAE — mean absolute error 8t spectral band; M — number of pixels in the scene; spectral

reflectance of a pixel in thé"iband;n — number of endmembers;— spectral reflectance of'iendmember or i
"spectral bandy; — proportion of the component within th® pixel.

Endmember selection to LSMM:

The endmember is a pure pixel (or the purest gowhd in the image) which is expected to contaily on
one component (vegetation, soil or shadow, in tiesgnt work). One approach to define the pure coems is
the selection of representative pixels in the insatieemselves, through the scatterplots betweerspbetral
bands (Wu and Murray, 2003; Dawelbait and Morafil2). One advantage of this technique is that the
endmembers are selected based on the spectrdbilyrimmherent to an image data, without the neéa pixel
totally pure.

In this study, according to Dawelbait and Mora®12), the Principal Component Analysis technique is
used to reduce data dimensionality. The first twwonpgonents were selected to constitute the axedheof t
scatterplot because they include the largest numbarncorrelated information. Three endmembersl,(soi
shadow and vegetation) were selected in the twaysiteas for the LSMM

Selection of bands to compose models:

Generally, all the bands of an orbital sensor aeduo compose the LSMM. However, the quality ef th
models are evaluated with different numbers of kafod the ALI sensor. The first two bands of thisisor
were not included in the model because we did edopmthe atmospheric correction step and thesdsare
the most affected by atmospheric scattering. Thedfgn bands, which correspond to the mentioned ALI
bands, presented noise. This noise highlights tififgping effect that is caused by the incoheretibcation of
the detectors of the sensor(Goodenoetgal, 2003).

After analyzing the results of the LSMM for the Akkensor, the Hyperion bands related to the central
wavelengths of the ALI bands were chosen for comparpurposes.

In most cases, the best design is compounded bleskecorrelated bands (Thesedtaal, 2002). Thus, a
correlation table between the ALI bands facilitated selection of the bands for the models. Thé b8MM
model for the ALI sensor in area | was also perfedlnm area Il and served as a comparative critefdotthe
MLP model.

Multilayer Perceptron Model:

One MLP model was structured in the SNNS softwgstesn (Stuttgart Neural Network Simulator) (Zetl
al., 1998). Liu and Wu (2005) highlight MLP as thegshaccurate nonlinear model. The network was siradt
with three input neurons (referring to ALI bands43,and 5 (see results)), 9 neurons in the hiddger] and
three output neurons (referring to the proportidisail, vegetation and shadow) (Fig.2). Sigmoidistigs was
the activation function used.



31 Jodo Flavio Costa dos Santesal, 2016

Australian Journal of Basic and Applied Science, 10(14) September 2016, Pages:-36

ALI 3> 4 -
W, D
LK g R

Input Hidden Output
L7 o S5
LA
Sixe

N

R K
ALT4—>

?"’Q’ﬁ‘ ):: f§

XN @/rN

<

ALl 5=

Fig.2: Structure of the Multilayer Perceptron (MLP) netwdo obtain the fraction images (soil, shadow
vegetation) from the bands 3, 4 and 5 of the Adedricand Imager sensor (AL

For model training purpose800 cycles were usealongwith the error backpropagation algorittand a
learning rater{) of 0.1. Pixels (5 m) from the thematic classifica of the RapidEye image were adoptethe
reference to the output data. Each pixel of the #drisor (900m is spatially equivalent to the dimension of
pixels from a RapidEye image. Therefore, a zonahtevas executed in a vector grid coincident whth ALI
pixelsto determine the proportion of each class (so#dshiv and vegetation) in the ALI pixelsmpled. The
supervised classification of the RapidEye image waxessed with the maximum likelihood (MAXVEF
pixel-by-pixel, algorithm. The training procedure was perfed with approximately 10% of the total area
similar methodology was adopted byodyet al.(1997), Liu and Wu (2005) and Van De Voot al (2009)

To evaluate the performance of the MLP and LSMM aitedn area I, thtMAEs were calculated by the
difference between the fraction images generatmah ffach model and the reference fraction imagesiredat
from the RapidEye thematic map (reference ¢

Results:

For area |, the first two principal components (PR@re used tcdisplay the scatterplot (Figur3),
representing 96.45% of the variance between thgeénfends of the sensor ALI, and 94.32% of the wad
between the image bands of the Hyperion. The sphiteof the first two PCs for the ALI sensor (.3-A)
definedthe image of a triangle better than that givenheyHyperion sensor (F.3-B).

250 g

PC1

200 R
150

100

0 50 100 150 200 250
pPC2 PC2

Fig. 3: Scatterplot between the first and second prinapatponents (PCs) from the ALI (A) and Hyperion
image sensors.

The endmembers were selected in the scatterpletn(ibist extreme point on each side of the imagi
triangle formed by the distribution of the pixeBlwes). They enabled tirepresentationf the spectral respon
in the ALI bands (Fig.4%) and in thecorresponding Hyperion bands (related to the ckniaaelengths of th
ALl bands) (Fig. 4B). Both the multispectral (larger wavelength intdr(AL)) and hyperspectral (small
wavelength interval AA)) data indicated the endmembers of the vegetascil and shadow in the san
locations.
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Fig.4: Spectral responsep)( of endmembers in multispectral bands image ALl @nd central banc
(corresponding to ALI bands) of hyperspectral sembgperion (B)

Next, the LSMM was structured with different compiosis and number of bands of the ALI and Hypel
sensors. To compose the models with three banose fless correlated were preferrThe models with the less
correlated bands wefermed by bands 3, and 4’ for the ALI sensor (Table 2) and by bands4Land 55 fo
the Hyperion sensor (Table 3).

Table 2: Corrdation matrix between ALI ban

Bands 2 3 4 4 5' 5 7

2 1 0.911 0.442 0.403 0.523 0.841 0.851
3 1 0.168 0.140 0.337 0.80¢ 0.912
4 1 0.993 0.919 0.59( 0.333
4 1 0.935 0.58:2 0.319
5' 1 0.77¢ 0.545
5 1 0.945
7 1

Table 3: Correlation matrix between Hyperion bands with cal wavelengths to the ALI sensor

Bands 21 31 44 51 111 151 206
21 1 0.937 0.602 0.554 0.566 0.86: 0.881
31 1 0.368 0.323 0.405 0.83¢ 0.911
44 1 0.995 0.899 0.66( 0.497
51 1 0.915 0.641 0.466
111 1 0.78:¢ 0.593
151 1 0.935
206 1

On analyzing the values of tIMAE and the percentage of inconsistent values (Tablé @asperceived
that the models formed by the three less correlbtaals showed good results. Besides, the modéhsting
fewer number of bands showed the higher performahiees, it is logical to onclude that the models of bt
performance produced the best fraction images.5).

Table 4: Performance of linear models tested for multisgé@t | sensor ad hyperspectral Hyperion sensc

Sensor ALl Band 2 3 4 4 5 5 7 '\;‘;‘L’l’;ss's(ﬁzg‘t
E 2/3/414'/5'/5/67 242 385 731 864 282 257 495 |67
g 3/4/4/5'/5 ~ 485 864 993 2554 2670 _ | 457
3/414'/5 ~ 329 149 134 289 _ _  |363
£ s IETE ~ 168 095 15 |24a4
S = PV _ 205 213 165 1445
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Model 3/4'/5 1.67 1.51 1.45 _ 2.42
Sensor Hyperion Band 21 31 44 51 111 151 2(

21/31/44/51/111/151/206 1253 1747 1983 1324 3®8. 5.01 945 | 8.48
L% 31/44/51/111/151 _ 6.85 12.50 18.18 23.12 7.47 _| 022.
% 31/44/51/111 _ 3.71 9.16 247 4.83 _ 131
2 c 31/44/151 _ 6.17 1.04 2.37 1.61
g %_ 31/44/51 1.84 0.75 1.25 _ _ 0.85
% £ 31/51/111 _ 3.73 _ 3.14 5.27 _ 1.66

Shadow

ALI

Hyperion

Soil

Fig. 5: Fractions images of soil, shadow and vegetatiaregged by the linear spectral mixture models that
presented the best fitting for multispectral (Aldhd hyperspectral (Hyperion) data. Brighter areas
indicate higher proportion of the components irsthmonochromatic fraction images.

The performance of the MLP model in area Il wagsssd employing the best results obtained fromthe

data for area | (the model with three bands, :idi&(Table 4)) as comparative data. A registegestby-

screen, between RapidEye and the ALl images wderpszd, with the selection of 21 control points dinel

use of a § degree polynomial. After geometric correctionpatrmean square error (RMSE) value less than 0.5
was computed. The fractions images generated by3MM and MLP models were compared with the
reference data which were obtained by the supehdgksessification of the RapidEye image (Fig.6). Tésults

of this comparison indicated that the MLP preseféeeer MAE values than the LSMM (Table 5).

Reference Data

Shadow

Fractions Images
Soil

Vegetation

]
4 %J
-
2 L
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S
¥
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*

Fig.6: Fractions images of soil, shadow and vegetationegged by the supervised classification of the
RapidEye image (reference data), linear spectratum@ model (LSMM) and multilayer perceptron
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(MLP) model. The reference data was used to cakeulze Mean Absolute Error (MAE) to area Il.
Brighter areas indicate higher proportion of thexponents in these monochromatic fraction images.

Table 5: Mean Absolute Error in the multilayer perceptrdlLP) and linear spectral mixture model (LSMM)

MLP LSMM
Shadow 0.1213 0.5037
Soil 0.0874 0.3748
Vegetation 0.0966 0.3431

Discussion:

The principal components analysis (PCA) technigeipéd to reduce spectral redundancy for both sensor
given that the first two principal components (P€splained more than 94% of the total variance.s€hReCs
also facilitated the selection of the endmemberghim scene. The low correlation existing betweesmh
facilitated visualization of the geometry of a trgge when the dispersion of the digital numbergfé 3) was
plotted. The endmembers were selected by idengfthie vertices of the triangle formed.

The key in achievingsuccess in the LSMM is to aaturselect the endmembers (Elnatral, 2000;
Dawelbait and Morari, 2012). Theoretically, if Hile pixels inside the triangle are defined by thémembers,
the mixture model can be considered to be an igtegdr model (Wu and Murray, 2003). Thus, for akethe
linear model can be used to describe the speciratina (Fig.3-A). However, the noise level in thep¢rion
bands, also identified by Goodenougfhal (2003), made it difficult to define the geometifya triangle (Fig.3-
B).

The comparison between the models of the ALI seasdrthose formed by the corresponding Hyperion
bands showed that the percentage of values outsidphysical meaning range (i.e<X0<1) is expected to be
higher in the latter. Goodenough al (2003) described some procedures that helpedntove the noise from
the Hyperion images, although they were not usediswork.

The models that included more bands produced highleres for theMAE and the highest percentage of
inconsistent values (Table 4). This behavior mayrddated to the correlation among the bands. Wihen t
number of bands is large, the LSMM must be cargfafiplied, as some bands are highly correlated @hsb
Mather, 2009) (Tables 2 and 3).

The bands 3, 4 and 4', from the ALI sensor, showexd least correlation (Table 2). However, the
performance of the model that considered these thaads was inferior to that which employed bands and
5 (Table 4). For the Hyperion data, it was evideat the less correlated bands (31, 44, 51) (T8)ptermed the
model with the lowest MAE values per band and ldwescentage of inconsistent values (Table 4).

The spectral behavior of the endmembers for aré@id.4) shows certain deviations from the curves
commonly recorded in the literature (Tso and MatBe09; Lillesandt al, 2014). This result indicates that the
reference pixels selected in this area are nollygiare. In practice, it is difficult to find inature a square area
of 900 m?2 exclusively composed of soil or vegetatior completely shaded. Thus, the selection of the
endmember in the image itself eliminated the needdmpletely pure pixels as a reference, whiatmis major
advantage of this methodology. Besides, the atnergpBcattering and absorption effects are includeithis
spectral response. The Amazon basin is greatlyénfted by atmospheric effects which affect the tsplec
behavior (Luet al,2002).

The spectral responsg) (of the endmember components of vegetation wasdfan an area of regrowth.
This result facilitates the understanding that rieaa of native forest, canopy stratification cauaadntense
presence of shadows, which prevented the detectiarpure pixel of vegetation in those areas (Shirkaroet
al., 1998). The soil response was expressed in rediawing bare soil and the shadow response wagssseut
in locations with water bodies. The observatiorthaf fraction images of soil, shadow and vegetafkig.5)
indicates that some portion of vegetation previailhe scene, followed by portions of shadow ant] Bothis
sequence.

Despite the good performance of the hyperspectat &tom Hyperion, the scarcity of the data avaddab
and relatively narrow coverage range are aspecdtsirga concern. Multispectral images, including tlaadsat
series, cover almost the whole globe and can b#yeascessed. This enabled a comparison between the
performance of the MLP and the LSMM.

The results of the present work indicated a béie? performance when compared with the LSMM (Table
5). These results agree with those reported by raattyors in the literature (Fooéy al. 1997; Carpenteet al,
1999; Liu and Wu, 2005; Van De Voordeal, 2009). Besides, Liu and Wu (2005) reported bgideformance
with the MLP when compared to the ARTMAP network.

One way to apply the MLP model is to use high sphaésolution data from a small fraction of thaitery
for network training and generalize it to the whakea covered by the lower resolution image (Lid &vu,
2005; Van de Voordet al, 2009). This application is very interesting Farge areas such as the ones covered
by PRODES. Thus, this method reveals the advardgeducing the cost of acquiring high-resolutiomages
and requires less processing power and data storage



35 Jodo Flavio Costa dos Santesal, 2016

Australian Journal of Basic and Applied Sciencesl0(14) September 2016, Pages: 27-36

One of the steps of assessing deforestation i\th@zon Rainforest is the application of spectrattare
analysis techniques to obtain fraction images émtifly areas without shadows (areas of bare saiegrowth)
(Camaraet al, 2013). Thus, the results of this study can mtewverucial information for ensuring accurate
applications of the mixture models.

Conclusions:

The results demonstrate that the LSMMs formed bgettbands (especially the regions of green, red and
near infrared) present a lower value for MAE whempared with the models having a higher numberaofls.
Hyperspectral data from Hyperion, especially ba3itis44 and 51, increased the accuracy of the limedure
models. The linear model, however, was not as atews the MLP. Thus, for evaluating the deforgstan
the Amazon Rainforest with mixture analysis, the abthe MLP network is highly recommended.
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