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Background: This paper presents the analysis and the des$igrihwe-phase cascaded
H-Bridge Multilevel inverter (CHBMLI) based on Newtc-Raphson technigue
controller for optimization techniques in harmomeduction of the inverter outpt
Objective:The proposed system was comprised of two sepafafdources, thr-
phase five-level CHBVLI, and its controller based on New-Raphson. The main aim
of this paper had been to design, model, constanct,conduct laboratory testing ug
CHB-MLI prototype for a thre@hase system. The source codes programming bas
NewtonRaphson controller was developed, and then stortml the Digital Sgnal
Processing (DSP) TMS320F281Results: The proposed controller was applied
CHB-MLI. The optimization of this system had managedréduce the harmon
contents of the inverter output. Besides, the empmrtal results of the develop

prototype are discussed. In addition, the perforeaaf the proposed system was
compared between simulation and experimental sedatt Optimization technique
ConclusionThe Optimization of this system had been capablereducing the
harmonic contents of the inverter output. Thusjnoiztion of the CHI-MLI system
had been successfully demonstrated in this study.

INTRODUCTION

The multilevel inverter concept has been emplogedetcrease harmonic distortion in the output wawve!
without decreasing the inverter power ou(Omar, Rasheed & Sulaiman 2018)has several advantages, s
as lower switching frequency and switchlosses, lower voltage device evaluation, lower lwarimdistortion,
high power quality waveform, higher efficiency, vetion of electromagnetic interference (EMI), ¢
interfacing renewable energy sources, such as pbltéic to the electric power g(Omar et al. 2014).
Nevertheless, at present, three common topolodiesutiilevel inverter have been proposed, which dicale-
clamped, flying capacitors (FCs)and cascaded H-bridge (CHB)mar, Rasheed, Sulaimaret al.
2015)(Rasheed, Omar, Sabatial. n.d. 201).

Furthermore, the type of multilevel inverter thaes a single DC source rather than multiple souscte
diodeclamped multilevel inverter. Meanwhile, the FC tyigedesigned by a series connection of capé
clamped switching cells. Lastlyhe CHB type, which can be series or parallel commtkcalso consists of
series of Heridge cells to synthesize the required voltagemfreeveral separate DC sources, which
recoverable from batteries, fuel cells, renewalplergy or ultr-capacitor.Besides, this CHB topology has t
least components for a given number of levels. TI€B is more advantageous among other multil
inverter topologies. Moreover, an appropriate dwitg angle has to be generated by using optimi
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techniques to control the switching frequencieseath semiconductor switches connected(Rasheed, Omar
&Sulaiman n.d. 2015). The pure sinusoidal voltageeform can be obtained by increasing the numb&f
sources as well. Thus, insulator gate bipolar tstams(IGBT) is an example of semiconductor swithieat are
switched on and off in any ways to keep the pesgmtof total harmonic distortion (THD) to its minim
value. These switches also have low block voltagktagh switching frequency(Lat al. 1996).

2.0 Cascaded H-Bridge Multilevel Inverter Topology:
2.1 Cascaded H-Bridge Multilevel Inverter (CHB-MLI):

The smallest number of voltage levels for a muéleinverter using cascaded- inverter with SDCSs is
three. Hence, in order to achieve a three-levelefiam, a single full-bridge inverter was employexd(hal &
Basic 2016)(Junlinget al. 2008). Basically, a full-bridge inverter is knovas an H-bridge cell, which is
illustrated in Figure 1. The inverter circuit casteid of four main switches and four freewheelingdds(Omar
etal. n.d. 2015).

Battery S1 J'flﬂ S2 J

Fig.1: AnH-bridge multilevel inverter

Based on the four-switch combination, three outliage levels, +V, -V, and 0, can be synthesizedte
voltage across A and B(Jones & Satiawan 2013).rgutie inverter operation shown in Fig. 1, switcBésand
S4 were closed at the same time to provide VABsitive value and a current path for lo.

Besides, switches S2 and S4 were turned on tog@owAB a negative value with a path for lo. Depeigdi
on the load current angle, the current might flolwotgh the main switch or the freewheeling
diode(Kaliamoorthyet al. 2014).

When all the switches were turned off, the curfeowed through the freewheeling diodes. In the cafse
zero level, there were two possible switching patdo synthesize zero level; S1 and S2 on, whe38amnd S4
off. Meanwhile, the other pattern switching wasd@f while S3 and S4 on. Additionally, a simple gaignal
with repeated zero-level patterns is shown in Fglr All zero levels were generated by turning dnasd
S2(Gupta & Mahanty 2015).
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Fig. 2: Repeated zero-level switching pattern.
Note that level 1 represents the state when the \gas turned on, while levelO represents the state
when the gate was turned off. Furthermore, in FHgurl, SandSwereturnedonlonger

thanQandSineachcyclebecausethesamezerolevelswitchingpattasn used(Gupta & Khambadkone 2007).As
aresult,3 and2 consumedmorepowerand generated highertempernatoteéhothertwoswitches. Hence,
in order to avoid such issues,adifferentswitchiriggnaforzerolevel was applied (Gruseral. 2013).

Inthefirstzerostage faindSwereturnedon;then, in the secondzerostagan® Jwere turned on, instead of
Si1and D(Fri et al. 2013)Byapplyingthismethod, the turn-ontimefor
eachswitchturnedouttobeequal,asshowninFigure.3.

Voltage source
~
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< I I

-V |
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|
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a

o

Fig.3: Swapped zero-level switching pattern.

In  order tosynthesizeamultilevelwaveform,theACottpeachofthedifferentlevel  H-bridge  cells
wasconnectedinseries.Thesynthesizedvoltagewavef@sitherefore, the sum of the inverter outputs. [doge,
the number ofoutputphasevoltagelevelsinacascadedrter is defined by

The positive output pulses are marked with P1 ahdnwhile the negative ones are indicated as P'1Riad
The Fourier series expansion of the general muétilstepped output voltage is shown in Equationafig the
transform was applied to Figure 4 in Equation {@)ere n is the harmonic number of the output veltafithe
inverter. The switching angles that are indicate®4 ... ®5 and Equation (2) was chosen to obtain minimum
voltage harmonics. Other than that, several funadahérequency-switching techniques were evaluadadh as
selective harmonic elimination PWM or active harmeaglimination PWM(Omer 2015).

T

V(wt) = Z e avde (cos (n.6;) + cos (n.0,) + -+ + cos (n.6s)). (@) D
n=1,3,5,.

T

V(wt) = Z avde (cos (n.6;) + cos (n.B,)). (Sin(nﬂ) (2)
n=1,3,5,.
An example of the switching angle calculation igegi in Equation (3) to eliminate 5th, 7th, 11thd d8th
order harmonics.
Cos1)+Cosf,)+Cosfz)+Cosf.)+Cosfs)=5-m
Cos(56,)+Cos(50,)+...+Cos(565)=0
Cos(76,)+Cos(70,)+...+Cos(765)=0

Cos(110,)+Cos(118,)+...+Co0s(1185)=0

Cos(130,)+Co0s(136,)+...+C0s(1365)=0 3)
Meanwhile, the modulation index is defined as nd aan be calculated as in Equation (4).
V;
m; = :v_dlc (4)

Since the values of Equation (4) are non-lineag,dhlculations were obtained by using Newton—Raphso
Iteration. The fundamental and high-frequency admmnethods are reviewed in the next section ofpthper.
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CHB-MLIs have been previously designed for statiR/compensators and motor drives, but the topoloag/
been prepared with an interface with renewablegnsources due to the use of separate DC sources.

Furthermore, numerous studies have been carriedboUEHB-MLIs for connecting renewable energy
sources with AC grid and power factor correction

m =2U+1 (6)
Where,

m = number of output phase voltage levels
U= the number of dc sources.
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Fig.4:Phase output voltage waveforms of a five-level togp CHB-MLI with two Separate DC sources.

2.2 Congtruction of the Proposed CHB-MLI Scheme:
Figure 5 shows that the proposed alternative rewkil inverter topology required fewer power devices
compared to the previously mentioned topologiesstnas CHB-MLI and the topology had been based en th

series connection of H-bridges with separate DGcssu
VA@ VB @ vVc@
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Fig.5: The Proposed Topology of a Three-Phase CHB-MLI.
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Since the output terminals of the H-bridges weneneeted in series, the DC sources must be isofeded
each other. Owing to this property, CHB-MLIs havisoabeen proposed to be used with fuel cells or
photovoltaic arrays in order to achieve higher lgveThe resulting AC output voltage was synthasilag the
addition of the voltages generated by different ridigee cells. Each single phase H-bridge generdteget
voltage levels as +Vdc, 0, and -Vdc by connectireg@DC source to the AC output by different combora of
four switches, S1, S2, S3, and S4, as depicteleirfitst cell of Figure 3.2. Meanwhile, the CHB-Mthat is
shown in Figure 3.2 utilised two separate DC saupsy phase and generated an output voltage wéhdiels.
Therefore, in order to obtain +Vdc, S1, and S2jcwis were turned on, whereas the Vdc level wasirdd by

turning on both S2 and S1. The output voltage wdsy Qurning on S1 and S2 switches. Moreover, n was
assumed as the number of modules connected irs serie

2.3 Simulation Model of the Three-Phase CHB-MLI based on MATLAB/SIMULINK:

The proposed topology of CHB-MLI, as shown in Fg®.2, was modelled via MATLAB/SIMULINK.
Matlab is a software package that can be used tforpe analysis, as well as solve mathematical and
engineering problems. It has the characteristiexoéllent programming and graphics capabilitiesaMvhile,
Simulink is used to model, analyse, and stimulgtgadhic system block diagram, which is fully inteigdhwith
MATLAB, easy and quick to learn, as well as fleiblt has a comprehensive library of blocks that lsa used
to simulate systems of linear, non-linear or discrements.The first step in testing the propdkeske-phase
five-level CHB-MLI was simulating it on softwareei, MATLAB/SIMULINK. The system’s operation was
simulated at the low switching frequency. The SIMNK model consist of DC source of 150V, pulse
generator block, three unit of single phase CHB-Mht R and L as a loads. The values of R = 100kiinLan
2.07mH. The system block diagram is shown in Figuead Figure 7.
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Fig.6: Five-Level CHB- MLI Model
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Fig.7: Current Measurement Five-Level CHB- MLI Model.

2.3.1 Simulation Results for Optimization of a Three-Phase Five-Level CHB-MLI model with MI= 0.84:

In the case of one cycle, the duration of time e@sal to 0.02s for optimization of a three-phase-fevel
CHB-MLI and the MI used was 0.84. Besides, the psagl CHB-MLI was simulated with switching angles
01=17.06" andB82=43.53" at the upper and lower switches of CHB-MLI. Figgi#el to 4.6 illustrate the timing
diagram of phases A, B, and C. Each phase compoisealitches S1, S2, S3, S4, S5, S6, S7, and SBofbr
the upper and lower switches. From Figures 8 tati8as observed that the upper and the lower seftchad
equal switching period.

h

Sh

Fig. 8: Upper Switches Timing Diagram for S1, S2, S3, &4ddat phase A with MI=0.84 ftﬁl =17.06 and
6,=43.53.

L

S

Fig. 9: Lower Switches Timing Diagram for S5, S6, S7, &8dat phase A with MI=0.84 f(ﬂl =17.06 and
6,=43.53
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Fig. 14: Output Optimization Phase Voltage 5-level inveltased on Modulation Index MI1=0.84.
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Fig. 15: Optimization Harmonic spectrum for voltage waveiayutput Of 5-level CHB-MLI with MI=0.84.
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Fig. 16: Optimization Current Waveform Output of 5-levéiB-MLI withMI=0.84.
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Fig. 17: Optimization harmonic spectrum for current wavafautput of 5-level of CHB-MLI with MI=0.84.

Figure 16 shows the optimization for the currentpatiwaveform of 5-level CHB-MLI for Phases A, B,
and C respectively. The optimization output curremveforms for each phase of CHB-MLI had been very
smooth due to accurate calculation of the switchamgles. Figure 17 shows the harmonic spectrum of
optimization for the current output waveform of C#B.| with THD values equivalent to 2.53%. The THD
value, in fact, met the IEC standard.

2.4Prototype devel opment of Three-Phase Experiment Circuits:

With regard to the hardware connection of the sgsta prototype model of the CHB-MLI system was
constructed and tested to verify the proposed systeperations shown in the experimental setup. fulie
system is shown in Figure 18. The system consist&dC power supply, three-phase five-level CHB-Miith
DSP-based control circuit connected RL loads, apdraonal computer (PC).
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Fig.18: The Overall Experimental «up for the Prototype of Fiveevel CHB MLI Inverters

2.4.10ptimization Experimental Results of A Three-Phase 5-level CHB-MLI (M1=0.84):

In order to determine if the simulation results @rgood agreement with the experimental resulsguace
code based on NewtdRaphson controller for optimization of a th-phase fivelevel CHE-MLI had been
developed. The developed source codes pmming, as shown in Appendix C (I), were then stonetd
DSPTMS320F2812. The DSPTMS320F2812 card was thenfased with the proposed prototype of C-
MLI. In the source code programming, one cycle tfa duration of time was equal to 0.02s with MI=C
Meanwhile, the values of the switching angles were 6= 17.06° and
6=43.53 at the upper and lower switches of CHB-MLI. Moreover, Figures 4.41 to Figure 4.49 show
timing diagram of phases A, B, and C. Each phasepcised of switches;, $ S; andS,, aswellas § &' S;,
and$ for upper and lower switches respectively. Besidiesn Figuresl9 until 24 it had been noted that t
upper and lower switches for each phase had egitghéng period

L e | 14 fug 2815
GUINSTEK | | 23:44:59
stall o
S2A00 0 |0 S

L | | | | . \ \ \ \

i _
SIALl N
X
SAAL L ] N

4 .

e 49 .9417Hz

[ ; ; g)— 2V @— 2l; 1( 2n;5 ] Q.E;BBMS][ : 1
Fig.19:Upper Switches Timing Diagram for £S2, S3, and S4 at PhaseA with MI=0.84 51 =17.06 andez
=43.53.
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Fig.20:Lower Switches Timing Diagram for S5, S6, S7, aBdaSphaseA with M1=0.84 f 01 =17.06 andez
=43.53.
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Figure 25shows the optimization voltage output waveform -level CHBMLI for Phases A, B, and !
respectively. The optimization of voltage outputveforms for each phase of C-MLI had been very smoot
due to accurate calculation of the switching andtégure26 shows the harmonic spectrum of the optimiza
of voltage output waveform for CF-MLI with THD values equivalent to 15.6%.

GWINSTEK | e | | [ Stop ] u Pgu?ag?ég
| ............... ‘T\/ .............. “

; 543.878Hz

(

_% 1 - i Sns (M EIBB;.Bus:][. ]

Fig.25:0ptimization of Voltage Output Waveform c-Level CHB-MLIwith MI=0.84.
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Fig.26:0Optimization Harmonic Spectrum of Voltage Outputwiarm of CHB-MLI with MI=0.84.

Figure 27 shows the optimization of voltage and ¢berent output waveform of 5-level CHB-MLI for
Phases A, B, and C respectively. The optimizatiocuorent output waveforms for each phase of CHBHWad
been very smooth due to accurate calculation obthieching angles. Figure 28 shows the harmonictspm
of the optimization of current output waveform ofiB-MLI with THD values equivalent to 3.9%. The THD
obtained met the International Electrical Code (JEB@ndard.

SCOPE HARMOHICS
A GB.6 U JH_ 3499 A
49.97 Hz Puni O 02944 F = .

04504816 14:57:30 1200 S50H=z 38 WYE  EH30160

l.ll]T I'l1F' [:Sl]FI [ i E

Fig.27:0ptimization Voltage and Current Output Wavefornbdfevel CHB-MLIWith MI=0.84.
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Fig.28:0ptimization Harmonic Spectrum of Current Outputw&farmOf CHB-MLI with MI1=0.84.

Conclusion:

Simulations and experimental work had been camigtdsuccessfully. The simulation studies showed the
best results on the designed CHB-MLI based on eetphase system. Each step of the simulation stindid
been conducted properly and displayed the goodihplitysto implement the control technique in harahs.
After the simulation studies were accomplished,ghely was continued with the experiments. The kitian
results for Optimization is in good agreement wille experimental results, which further exhibitdu t
effectiveness of the proposed developed prototypéta controller.
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