
Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 43-46

 ISSN:1991-8178

Australian Journal of Basic and Applied Sciences

Journal home page: www.ajbasweb.com

Corresponding Author: Gururamasenthilvel P., Research Scholar, Department of Computer Science and Engineering,

 Manonmaniam Sundaranar University, Tirunelveli - 627012, India

 E-amil: gurupandian.chennai@gmail.com

Enhanced Hoeffding Tree For Mining Continuous Data Stream In Cloud

1Gururamasenthilvel P. and 2DR.G. Gunasekaran

1Research Scholar, Department of Computer Science and Engineering, Manonmaniam Sundaranar University, Tirunelveli - 627012, India
2Principal, Meenakshi College of Engineering, Anna University, West KK Nagar, Chennai-600078, India

A R T I C L E I N F O A B S T R A C T

Article history:
Received 21 March 2015

 Accepted 3 April 2015

Available online 27 April 2015

Keywords:

data streams, classification, Hoeffding
tree, overfitting

 All organizations have huge amount of data which grows into terabytes of records in a
day that has to be mined to analyze evolving patterns. When the data set size generated

becomes continuous stream, incremental classification algorithms are required. With

high speed data stream arriving, it becomes impossible to store all the data and only the
summary is computed and stored with all other information being thrown away.The

Hoeffding tree algorithm is thebest method for inducing decision trees from continuous

data streams using Hoeffding bounds. In this paper, an enhanced Hoeffding treehas
been designed to mine high speed continuous stream of data with drift. Experimental

study has been done to show the performance of the proposed algorithm.

© 2015 AENSI Publisher All rights reserved.

To Cite This Article: Gururamasenthilvel P. and DR.G. Gunasekaran., Enhanced Hoeffding Tree For Mining Continuous Data Stream In

Cloud. Aust. J. Basic & Appl. Sci., 9(10): 43-46, 2015

INTRODUCTION

 Present knowledge discovery systems has time,

memory and size constraints. The sample size of less

data leads to overfitting with less computational

power being used. Recent data mining applications

has shortage in time and memory and not in samples.

Simple models with under fitting of samples are

produced using available computational resource

inspite of huge data being available. Sequential

scanning of disk for mining huge databases that do

not reside in main memory becomes a priority today

with expansion of internet.

 Todays mining systems face the problem of

samples arriving at very fast rate that it becomes

difficult to be mined. The mining systems are

expected to operate endlessly examining samples as

they arrive without losing any useful information. In

this paper, an Enhanced Hoeffding Tree (EHT), with

learning based on decision-tree is proposed. The

proposed algorithm mines samples in less time and

does not store it in main memory as it sees each

sample only once and the analysis quality was found

to smoothly increase with time. The paper is

organized as follows: section 2 presents literature

survey ; section 3 presents the basic Hoeffding

Trees[HT]with its algorithm:section 4 presents the

proposed algorithm:section 5 provides the

experimental results and section 6 concludes with a

discussion of related and future work.

2. Literature Survey:

 Many works were done on mining large

databases using classification and regression trees

(Breiman, L., et al., 1984). Catlett (1991) presented a

decision-tree based learner that can handlethousands

of datasets. Detteich et al. (1995) and Esteret al.

(1998) concentrated on overfitting and concentrated

on very large datasets.Gehrke et al.'s BOAT (1999)

concentrated on optimizing decision tree

construction. Hoeffding trees (Domingos, P. and G.

Hulten, 2000) can access data sequentially and just

required one scan. In HTnew samples can be added

any time and is incremental in nature.It has all the

characteristics of decision tree learned via batch

learning. Table 1 provides the literature survey of

some important papers.

3. Hoeffding Trees:

 Hoeffding tree induction algorithm (Domingos,

P. and G. Hulten, 2000) produces decision tree from

incoming data stream incrementally. Every sample is

analyzed only once and no samples are stored after

they are used to update the tree which contains

information and grows with time.According to

Hoeffding bound (Wassily Hoeffding, 1963), after n

independent observations, with probability 1 − δ the

true mean will not vary from estimated mean by a

value greater than:

44 Gururamasenthilvel P. and DR.G. Gunasekaran, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 43-46

Table 1: Literature survey with evaluation method, memory and data sources.

Ref. Evaluation method Memory Data sources
Training

examples
Test examples

6 holdout none
1 custom syn.

1 private real

400k

100k

50k

7 holdout 40MB 14 custom syn. 100m 50k

8,9 holdout none 3public syn(UCI) 1m 250k

10,11
5-fold cv,

holdout
none

10public real(UCI)

2public real(UCIKDD)
54K 13.5K

12 various
Strict

hardware

4 public real(UCI)

8public real(spec95)

100k

2.6m

13
5-fold cv,

holdout
none

2public real(UCI)

1 private real

45k

33k

5 fold cv

5 fold cv

n

R

2

)/1ln(2 
 

 This Hoeffding bound is true for anydistribution

generating the values and relies on range,

observations and confidence only.

 Classification problem is considered as a set of

N training samples of form (a; b), a representing

discrete class label and b representing d attributes.

The aim is to produce a model b = f (a) to predict the

class b of forthcoming samples of a with high

accuracy.During learning phase, HT starts with one

root node. When a sample from the data stream

arrives Hoeffding tree induction algorithm is invoked.

The pseudocode of basic Hoeffding tree induction

algorithm is given below

1: Consider tree HT with one leaf which is root

2: for every arriving samples do

3: quicksort every sampleto leaf l with HT

4: Apprisetheinformation in l

5: Increase nl , depending on samples at l

6: if nl mod nmin = 0 and samples at l do not belong to

same class then

7: For each attribute calculate Gl (Xi)

8: consider Xaasattributehavingbest Gl

9: consider Xbas attribute having second best GlR
2

ln(1/δ)

10: Compute Hoeffding bound ϵ if ϵ
2
 = 2nl

11: if Xa= Xb and (Gl (Xa) − Gl (Xb) > ϵ) then

12: Substitute l by node that separates on Xa

13: for everyseperation do

14: add a leaf using sufficient statistics

15: end for

16: end if

17: end if

18: end for

Fig. 1: Basic Hoeffding tree induction algorithm.

 Line 1 of the pseudocode initializes a single root

node. For every training sample, lines 2 -18 form a

loop. All samples are checkedbased on tests available

in decision tree constructed (line 3). Update the leaf

as each leaf hold statistics about further growth (line

4). Information gain of splitting each attribute is

estimated from sufficient statistics.Sample count at

leaf nl is updated(line 5).

 Lines 6-17 is executed fornminsamples of a

particular leaf and lines 7-11 perform the test using

the Hoeffding bound to decide whether he has won.

Tree can be protected against usage of much memory

by removing poor attribute.

4. Proposed Algorithm:

 In this algorithm, similar attribute is removed.

The enhancements thatare made to the basic

algorithmare as follows:Similar attributes with little

difference is removed.It is inefficient to recompute G

every time and the user can specify the minimum

number of new samples nmin that can be accumulated

before recomputing G. Care should be taken that

maximum memory is not utilized even if the data

stream arrives at a faster rate. The tree can scan the

previously seen sample. The algorithm also handles

concept change.

EHT(datastr,δ)

1Initialize HT as tree having one leaf

2Init counts nijk at root

3for everysample (x, y) in data stream

4do increase, decrease andremove samples

5 EHTGROW((x, y),HT, δ)

6FINDSPLIT_VALIDITY(HT, n, δ)

EHTGROW((x, y),HT, δ)

1quicksort (x, y) leaf l withHT

2at leaf l update the count

3if samples analysed inl is not of same group

4 thenfindinformation gain G of attribute

5 ifdifference ofinf. gain of 1
st
 best and 2

nd
 best

attr.>
n

R

2

/1ln2 

6 then leaf spliton best attribute

7 for each branch

8 do createleaf with count

9 Create another subtree

FINDSPLIT_VALIDITY(HT, n, δ)

1 for every node l in HT which is not leaf

2 do for each tree Talt in created subtree

3 do FINDSPLIT_VALIDITY(Talt, n, δ)

4 if new attributeexists in node l

5 do createnew subtree

Fig. 2: EHT algorithm.

 Figure 2 shows EHT algorithm thatcreates a

model that learns inline with changing concepts and

45 Gururamasenthilvel P. and DR.G. Gunasekaran, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 43-46

keeps sufficient statistics for M. It uses new samples

as validation set to match the model performance

created with new and old searches. Old model is

pruned when new oneis better than old one and

search can also be pruned.

5. Experimental Results:

 EHT use information gain as the G function and

14 concepts with 2 classes and 100 binary attributes

are used. The concepts were created by randomly

generating decision trees.Figure 3 shows the

accuracy of learners with respect to huge training

samples. EHT was run with δ = 10
-7

, τ = 5%,nmin =

200 and it can be noted from figure 3 that C4.5

shows good accuracy till 25k examples after which

accuracy of C4.5 and HT are similar. From figure it

can be observed that the performance of EHT is

much better than C4.5 and HT. Figure 4 shows the

tree size as a function of number of nodes and

number of samples and clearly indicates EHT has

more noise resistance.

 For analyzing the efficiency of EHT, 160 million

samples were generated from the (0.25, 0.10, 25209,

12605) concept. Figure 5 compares EHT andC4.5 on

this data set. C4.5 stops at 1 lakh samples but EHT

progresses through million samples providing 0.58%

accuracy initially that increases over time.

Fig. 3: Accuracy % with respect to number of training examples.

Fig. 4: Tree size as number of nodes vs number of samples.

Fig. 5: EHT trained on 160 million examples.

6. Conclusions:

 This paper presented Hoeffding trees which is a

state-of-art method for analyzing data streams.

Hoeffding trees helps in fast learning ofsamples

without much memory requirement as all the

information is available in tree. Experimental studies

show its effectiveness in taking advantage of massive

numbers of examples.The enhanced EHT learns

concept in changing domains and can also handle

concept drift and has efficiently learned million

46 Gururamasenthilvel P. and DR.G. Gunasekaran, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 43-46

samples in very less time of 9428s. Future work

include application of EHT to analyze Web log

data,parallelizing EHT, intrusion detection and

adapting EHT to learn evolving concepts in time-

changing domains.

REFERENCES

Breiman, L., J.H. Friedman, R.A. Olshen and

C.J. Stone, 1984. Classiffication and Regression

Trees. Wadsworth, Belmont, CA.

Catlett, J., 1991. Megainduction: Machine

Learning on Very Large Databases. PhD thesis,

Basser Department of Computer Science, University

of Sydney, Sydney, Australia.

Dietterich, T. G., 1995. Overfitting and

undercomputing in machine learning. Computing

Surveys, 27: 326-327.

Ester, M., H.P. Kriegel, J. Sander, M. Wimmer

and X. Xu, 1998. Incremental clustering for mining

in a data warehousing environment. In Proceedings

of the Twenty-Fourth International Conference on

Very Large Data Bases, 323-333, New York, NY.

Morgan Kaufmann.

Gehrke, J., V. Ganti, R. Ramakrishnan and W.L.

Loh, 1999. BOAT: optimistic decision tree

construction. In Proceedings of the ACM SIGMOD

International Conference on Management of Data,

pages 169{180, Philadelphia, PA, ACM Press

Chu, F. and C. Zaniolo, 2004. Fast and light

boosting foradaptive mining of data streams. In

PAKDD, pages 282-292. Springer Verlag.

Domingos, P. and G. Hulten, 2000. Mining high-

speed data streams. In Knowledge Discovery and

Data Mining, pages, 71-80.

Joao Gama, Ricardo Rocha, and Pedro Medas,

2003. Accurate decision trees for mining high

speeddata streams. In KDD, 523-528.

Joao Gama, Raquel Sebastiao and Pedro Pereira

Rodrigues, 2009. Issues in evaluation of stream

learning algorithms. In KDD, 329-338.

Nikunj, C., Oza and Stuart J. Russell,

2001a.Experimental comparisons of online and batch

versionsof bagging and boosting. In KDD, 359-364.

Nikunj, C., Oza and Stuart J. Russell, 2001b.

Online bagging and boosting. In AISTATS, 105-112.

Alan Fern and Robert Givan, 2003. Online

ensemble learning: An empirical study. Machine

Learning, 53(1/2): 71-109.

Nick Street, W. and Yong Seog Kim, 2001. A

streaming ensemble algorithm (SEA) for large-scale

classification. In International Conference on

Knowledge Discovery and Data Mining, 377–382.

Wassily Hoeffding, 1963. Probability

inequalities for sums of bounded random variables.

Journal of the American Statistical Association,

58(301): 13–30.

