Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 43-46

ISSN:1991-8178

Australian Journal of Basic and Applied Sciences

Journal home page: www.ajbasweb.com

Australian

Journal of

Basic and Applied Sciences

AENSI Publisher

AJBAS™

Enhanced Hoeffding Tree For Mining Continuous Data Stream In Cloud

'Gururamasenthilvel P. and 2DR.G. Gunasekaran

'Research Scholar, Department of Computer Science and Engineering, Manonmaniam Sundaranar University, Tirunelveli - 627012, India
?Principal, Meenakshi College of Engineering, Anna University, West KK Nagar, Chennai-600078, India

ARTICLE INFO

ABSTRACT

Article history:

Received 21 March 2015
Accepted 3 April 2015
Available online 27 April 2015

All organizations have huge amount of data which grows into terabytes of records in a
day that has to be mined to analyze evolving patterns. When the data set size generated
becomes continuous stream, incremental classification algorithms are required. With
high speed data stream arriving, it becomes impossible to store all the data and only the

summary is computed and stored with all other information being thrown away.The

Keywords:
data streams, classification, Hoeffding
tree, overfitting

Hoeffding tree algorithm is thebest method for inducing decision trees from continuous
data streams using Hoeffding bounds. In this paper, an enhanced Hoeffding treehas
been designed to mine high speed continuous stream of data with drift. Experimental

study has been done to show the performance of the proposed algorithm.

© 2015 AENSI Publisher All rights reserved.

To Cite This Article: Gururamasenthilvel P. and DR.G. Gunasekaran., Enhanced Hoeffding Tree For Mining Continuous Data Stream In

Cloud. Aust. J. Basic & Appl. Sci., 9(10): 43-46, 2015

INTRODUCTION

Present knowledge discovery systems has time,
memory and size constraints. The sample size of less
data leads to overfitting with less computational
power being used. Recent data mining applications
has shortage in time and memory and not in samples.
Simple models with under fitting of samples are
produced using available computational resource
inspite of huge data being available. Sequential
scanning of disk for mining huge databases that do
not reside in main memory becomes a priority today
with expansion of internet.

Todays mining systems face the problem of
samples arriving at very fast rate that it becomes
difficult to be mined. The mining systems are
expected to operate endlessly examining samples as
they arrive without losing any useful information. In
this paper, an Enhanced Hoeffding Tree (EHT), with
learning based on decision-tree is proposed. The
proposed algorithm mines samples in less time and
does not store it in main memory as it sees each
sample only once and the analysis quality was found
to smoothly increase with time. The paper is
organized as follows: section 2 presents literature
survey ; section 3 presents the basic Hoeffding
Trees[HT]with its algorithm:section 4 presents the
proposed algorithm:section 5 provides the
experimental results and section 6 concludes with a
discussion of related and future work.

2. Literature Survey:

Many works were done on mining large
databases using classification and regression trees
(Breiman, L., et al., 1984). Catlett (1991) presented a
decision-tree based learner that can handlethousands
of datasets. Detteich et al. (1995) and Esteret al.
(1998) concentrated on overfitting and concentrated
on very large datasets.Gehrke et al.'s BOAT (1999)
concentrated on optimizing decision tree
construction. Hoeffding trees (Domingos, P. and G.
Hulten, 2000) can access data sequentially and just
required one scan. In HTnew samples can be added
any time and is incremental in nature.lt has all the
characteristics of decision tree learned via batch
learning. Table 1 provides the literature survey of
some important papers.

3. Hoeffding Trees:

Hoeffding tree induction algorithm (Domingos,
P. and G. Hulten, 2000) produces decision tree from
incoming data stream incrementally. Every sample is
analyzed only once and no samples are stored after
they are used to update the tree which contains
information and grows with time.According to
Hoeffding bound (Wassily Hoeffding, 1963), after n
independent observations, with probability 1 — § the
true mean will not vary from estimated mean by a
value greater than:

Corresponding Author: Gururamasenthilvel P., Research Scholar, Department of Computer Science and Engineering,
Manonmaniam Sundaranar University, Tirunelveli - 627012, India
E-amil: gurupandian.chennai@gmail.com

44 Gururamasenthilvel P. and DR.G. Gunasekaran, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 43-46

Table 1: Literature survey with evaluation method, memory and data sources.

Ref. Evaluation method Memory Data sources Training Test examples
examples
1 custom syn. 400k 50k
6 holdout none 1 private real 100k
7 holdout 40MB 14 custom syn. 100m 50k
8,9 holdout none 3public syn(UCI) 1m 250k
5-fold cv, 10public real(UCI
10,11 holdout none 2pubrl)ic reaI(UC(IKD)D) 54K 135K
12 various Strict 4 puplic real(UCI) 100k
hardware 8public real(spec95) 2.6m
13 5-fold cv, none 2public real(UCI) 45k 5 fold cv
holdout 1 private real 33k 5 fold cv

2
oo R?In(1/5)
2n

This Hoeffding bound is true for anydistribution
generating the wvalues and relies on range,
observations and confidence only.

Classification problem is considered as a set of
N training samples of form (a; b), a representing
discrete class label and b representing d attributes.
The aim is to produce a model b = f (a) to predict the
class b of forthcoming samples of a with high
accuracy.During learning phase, HT starts with one
root node. When a sample from the data stream
arrives Hoeffding tree induction algorithm is invoked.
The pseudocode of basic Hoeffding tree induction
algorithm is given below
1: Consider tree HT with one leaf which is root
2: for every arriving samples do
3: quicksort every sampleto leaf | with HT
4: Apprisetheinformation in |
5: Increase n;, depending on samples at |
6: if n, mod nyi, = 0 and samples at | do not belong to
same class then
7: For each attribute calculate G, (X;)

8: consider X,asattributehavingbest G,

9: consider Xgas attribute having second best
In(1/8)

10: Compute Hoeffding bound € if € =

11: if X,= Xy and (G| (Xa) -G (Xb) > €) then
12: Substitute | by node that separates on X,
13: for everyseperation do

14: add a leaf using sufficient statistics

15: end for

16: end if

17:end if

18: end for

GR’

Fig. 1: Basic Hoeffding tree induction algorithm.

Line 1 of the pseudocode initializes a single root
node. For every training sample, lines 2 -18 form a
loop. All samples are checkedbased on tests available
in decision tree constructed (line 3). Update the leaf
as each leaf hold statistics about further growth (line
4). Information gain of splitting each attribute is
estimated from sufficient statistics.Sample count at
leaf nl is updated(line 5).

Lines 6-17 is executed forny,samples of a
particular leaf and lines 7-11 perform the test using

the Hoeffding bound to decide whether he has won.
Tree can be protected against usage of much memory
by removing poor attribute.

4. Proposed Algorithm:

In this algorithm, similar attribute is removed.
The enhancements thatare made to the basic
algorithmare as follows:Similar attributes with little
difference is removed.It is inefficient to recompute G
every time and the user can specify the minimum
number of new samples n, that can be accumulated
before recomputing G. Care should be taken that
maximum memory is not utilized even if the data
stream arrives at a faster rate. The tree can scan the
previously seen sample. The algorithm also handles
concept change.

EHT (datastr,d)

linitialize HT as tree having one leaf

2Init counts nijk at root

3for everysample (x, y) in data stream

4do increase, decrease andremove samples

5 EHTGROW((x, y),HT, d)
6FINDSPLIT_VALIDITY(HT, n, 3)
EHTGROW((x, y),HT, 3)

lquicksort (x, y) leaf | withHT

2at leaf | update the coynt

3if samples analysed inl is not of same group
4 thenfindinformation gain G of attribute

5 ifdifference ofinf. gain of 1% best and 2" best

IR%In1/8
attr.> [—————
2n

6 then leaf spliton best attribute

7 for each branch

8 do createleaf with count

9 Create another subtree
FINDSPLIT_VALIDITY(HT, n, §)

1 for every node | in HT which is not leaf
2 do for each tree T, in created subtree

3 do FINDSPLIT_VALIDITY (T, N, 8)
4 if new attributeexists in node |

5 do createnew subtree

Fig. 2: EHT algorithm.

Figure 2 shows EHT algorithm thatcreates a
model that learns inline with changing concepts and

45

Gururamasenthilvel P. and DR.G. Gunasekaran, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 43-46

keeps sufficient statistics for M. It uses new samples
as validation set to match the model performance
created with new and old searches. Old model is
pruned when new oneis better than old one and
search can also be pruned.

5. Experimental Results:

EHT use information gain as the G function and
14 concepts with 2 classes and 100 binary attributes
are used. The concepts were created by randomly
generating decision trees.Figure 3 shows the
accuracy of learners with respect to huge training
samples. EHT was run with & = 10'7, T = 5%,nmin =
200 and it can be noted from figure 3 that C4.5

90

shows good accuracy till 25k examples after which
accuracy of C4.5 and HT are similar. From figure it
can be observed that the performance of EHT is
much better than C4.5 and HT. Figure 4 shows the
tree size as a function of number of nodes and
number of samples and clearly indicates EHT has
more noise resistance.

For analyzing the efficiency of EHT, 160 million
samples were generated from the (0.25, 0.10, 252009,
12605) concept. Figure 5 compares EHT andC4.5 on
this data set. C4.5 stops at 1 lakh samples but EHT
progresses through million samples providing 0.58%
accuracy initially that increases over time.

85t
80 f
5|

70

Accuracy %

65

60

s

4.5
HT SRR
EHT

55

100 1000 10000 100000 le+006 1e+007 le+008
No. Examples
Fig. 3: Accuracy % with respect to number of training examples.
25000 -~ -
C45
HT
20000 EHT
_g 15000
z
é 10000
¥
5000 /
0 P
100 1000 10000 100000 1e+006 1e+007 1e+008

No. Examples

Fig. 4: Tree size as number of nodes vs number of samples.

Accuracy %

C45

[u]
o
=]

100
1000
10000

Fig. 5: EHT trained on 160 million examples.

6. Conclusions:

This paper presented Hoeffding trees which is a
state-of-art method for analyzing data streams.
Hoeffding trees helps in fast learning ofsamples
without much memory requirement as all the

100000

e+006
le+007
le+008
1e+009

No. Examples

information is available in tree. Experimental studies
show its effectiveness in taking advantage of massive
numbers of examples.The enhanced EHT learns
concept in changing domains and can also handle
concept drift and has efficiently learned million

46 Gururamasenthilvel P. and DR.G. Gunasekaran, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 43-46

samples in very less time of 9428s. Future work
include application of EHT to analyze Web log
data,parallelizing EHT, intrusion detection and
adapting EHT to learn evolving concepts in time-
changing domains.

REFERENCES

Breiman, L., J.H. Friedman, R.A. Olshen and
C.J. Stone, 1984. Classiffication and Regression
Trees. Wadsworth, Belmont, CA.

Catlett, J., 1991. Megainduction: Machine
Learning on Very Large Databases. PhD thesis,
Basser Department of Computer Science, University
of Sydney, Sydney, Australia.

Dietterich, T. G., 1995. Overfitting and
undercomputing in machine learning. Computing
Surveys, 27: 326-327.

Ester, M., H.P. Kriegel, J. Sander, M. Wimmer
and X. Xu, 1998. Incremental clustering for mining
in a data warehousing environment. In Proceedings
of the Twenty-Fourth International Conference on
Very Large Data Bases, 323-333, New York, NY.
Morgan Kaufmann.

Gehrke, J., V. Ganti, R. Ramakrishnan and W.L.
Loh, 1999. BOAT: optimistic decision tree
construction. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 169{180, Philadelphia, PA, ACM Press

Chu, F. and C. Zaniolo, 2004. Fast and light
boosting foradaptive mining of data streams. In
PAKDD, pages 282-292. Springer Verlag.

Domingos, P. and G. Hulten, 2000. Mining high-
speed data streams. In Knowledge Discovery and
Data Mining, pages, 71-80.

Joao Gama, Ricardo Rocha, and Pedro Medas,
2003. Accurate decision trees for mining high
speeddata streams. In KDD, 523-528.

Joao Gama, Raquel Sebastiao and Pedro Pereira
Rodrigues, 2009. Issues in evaluation of stream
learning algorithms. In KDD, 329-338.

Nikunj, C., Oza and Stuart J. Russell,
2001a.Experimental comparisons of online and batch
versionsof bagging and boosting. In KDD, 359-364.

Nikunj, C., Oza and Stuart J. Russell, 2001b.
Online bagging and boosting. In AISTATS, 105-112.

Alan Fern and Robert Givan, 2003. Online
ensemble learning: An empirical study. Machine
Learning, 53(1/2): 71-109.

Nick Street, W. and Yong Seog Kim, 2001. A
streaming ensemble algorithm (SEA) for large-scale
classification. In International Conference on
Knowledge Discovery and Data Mining, 377-382.

Wassily Hoeffding, 1963. Probability
inequalities for sums of bounded random variables.
Journal of the American Statistical Association,
58(301): 13-30.

