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 All organizations have huge amount of data which grows into terabytes of records in a 
day that has to be mined to analyze evolving patterns. When the data set size generated 

becomes continuous stream, incremental classification algorithms are required. With 

high speed data stream arriving, it becomes impossible to store all the data and only the 
summary is computed and stored with all other information being thrown away.The 

Hoeffding tree algorithm is thebest method for inducing decision trees from continuous 

data streams using Hoeffding bounds. In this paper, an enhanced Hoeffding treehas 
been designed to mine high speed continuous stream of data with drift. Experimental 

study has been done to show the performance of the proposed algorithm. 
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INTRODUCTION 

 

 Present knowledge discovery systems has time, 

memory and size constraints. The sample size of less 

data leads to overfitting with less computational 

power being used. Recent data mining applications 

has shortage in time and memory and not in samples. 

Simple models with under fitting of samples are 

produced using available computational resource 

inspite of huge data being available. Sequential 

scanning of disk for mining huge databases that do 

not reside in main memory becomes a priority today 

with expansion of internet. 

 Todays mining systems face the problem of 

samples arriving at very fast rate that it becomes 

difficult to be mined.  The mining systems are 

expected to operate endlessly examining samples as 

they arrive without losing any useful information. In 

this paper, an Enhanced Hoeffding Tree (EHT), with 

learning based on decision-tree is proposed. The 

proposed algorithm mines samples in less time and 

does not store it in main memory as it sees each 

sample only once and the analysis quality was found 

to smoothly increase with time. The paper is 

organized as follows: section 2 presents literature 

survey ; section 3 presents the basic Hoeffding 

Trees[HT]with its algorithm:section 4 presents the 

proposed algorithm:section 5 provides the 

experimental results and section 6 concludes with a 

discussion of related and future work. 

  

2. Literature Survey: 

 Many works were done on mining large 

databases using classification and regression trees 

(Breiman, L., et al., 1984). Catlett (1991) presented a 

decision-tree based learner that can handlethousands 

of datasets.  Detteich et al. (1995) and Esteret al. 

(1998) concentrated on overfitting and concentrated 

on very large datasets.Gehrke et al.'s BOAT (1999) 

concentrated on optimizing decision tree 

construction. Hoeffding trees (Domingos, P. and G. 

Hulten, 2000) can access data sequentially and just 

required one scan. In HTnew samples can be added 

any time and is incremental in nature.It has all the 

characteristics of decision tree learned via batch 

learning. Table 1 provides the literature survey of 

some important papers. 

 

3. Hoeffding Trees:  

 Hoeffding tree induction algorithm  (Domingos, 

P. and G. Hulten, 2000) produces decision tree from 

incoming data stream incrementally. Every sample is 

analyzed only once and no samples are stored after 

they are used to update the tree which contains 

information and grows with time.According to 

Hoeffding bound (Wassily Hoeffding, 1963), after n 

independent observations, with probability 1 − δ the 

true mean will not vary from estimated mean by a 

value greater than: 
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Table 1: Literature survey with evaluation method, memory and data sources. 

Ref. Evaluation method Memory Data sources 
Training 

examples 
Test examples 

6 holdout none 
1 custom syn. 

1 private real 

400k 

100k 

50k 

 

7 holdout 40MB 14 custom syn. 100m 50k 

8,9 holdout none 3public syn(UCI) 1m 250k 

10,11 
5-fold cv, 

holdout 
none 

10public real(UCI) 

2public real(UCIKDD) 
54K 13.5K 

12 various 
Strict 

hardware 

4 public real(UCI) 

8public real(spec95) 

100k 

2.6m 
 

13 
5-fold cv, 

holdout 
none 

2public real(UCI) 

1 private real 

45k 

33k 

5 fold cv 

5 fold cv 

 

n

R

2

)/1ln(2 
 

 

 This Hoeffding bound is true for anydistribution 

generating the values and relies on range, 

observations and confidence only.  

 Classification problem is considered as a set of 

N training samples of form (a; b), a representing 

discrete class label and b representing d attributes. 

The aim is to produce a model b = f (a) to predict the 

class b of forthcoming samples of a with high 

accuracy.During learning phase, HT starts with one 

root node.  When a sample from the data stream 

arrives Hoeffding tree induction algorithm is invoked. 

The pseudocode of basic Hoeffding tree induction 

algorithm is given below 

1: Consider tree HT with one leaf which is root 

2: for every arriving samples do 

3: quicksort every sampleto leaf  l with HT 

4: Apprisetheinformation in l 

5: Increase nl , depending on samples at l 

6: if nl mod nmin = 0 and samples at l do not   belong to 

same class then 

7: For each attribute calculate Gl (Xi)  

8: consider Xaasattributehavingbest Gl 

9: consider Xbas attribute having second best   GlR
2
 

ln(1/δ)          

10: Compute Hoeffding bound ϵ  if ϵ
2
 =  2nl                                

11: if Xa= Xb and (Gl (Xa) − Gl (Xb) > ϵ) then 

12: Substitute l by node that separates on Xa 

13: for everyseperation do 

14: add a leaf using sufficient statistics 

15: end for 

16: end if 

17: end if 

18: end for  

 

Fig. 1: Basic Hoeffding tree induction algorithm. 

 

 Line 1 of the pseudocode initializes a single root 

node. For every training sample, lines 2 -18 form a 

loop. All samples are checkedbased on tests available 

in decision tree constructed (line 3). Update the leaf 

as each leaf hold statistics about further growth (line 

4). Information gain of splitting each attribute is 

estimated from sufficient statistics.Sample count at 

leaf nl is updated(line 5). 

 Lines 6-17 is executed fornminsamples of a 

particular leaf and lines 7-11 perform the test using 

the Hoeffding bound to decide whether he has won. 

Tree can be protected against usage of much memory 

by removing  poor attribute. 

 

4. Proposed Algorithm: 

 In this algorithm, similar attribute is removed. 

The enhancements thatare made to the basic 

algorithmare as follows:Similar attributes with little 

difference is removed.It is inefficient to recompute G 

every time and the user can specify the minimum 

number of new samples nmin that can be accumulated 

before recomputing G. Care should be taken that 

maximum memory is not utilized even if the data 

stream arrives at a faster rate. The tree can scan the 

previously seen sample. The algorithm also handles 

concept change. 

 

EHT(datastr,δ) 

1Initialize HT as tree having one leaf 

2Init counts nijk at root 

3for everysample (x, y) in data stream 

4do increase, decrease andremove samples 

5 EHTGROW((x, y),HT, δ) 

6FINDSPLIT_VALIDITY(HT, n, δ) 

EHTGROW((x, y),HT, δ) 

1quicksort (x, y) leaf l withHT 

2at leaf l update the count 

3if samples analysed inl is not of same group 

4 thenfindinformation gain G of attribute 

5 ifdifference ofinf. gain of 1
st
 best and 2

nd
 best 

attr.>
n

R

2

/1ln2 
 

6 then leaf spliton best attribute 

7 for each branch 

8 do createleaf with count 

9 Create another subtree 

FINDSPLIT_VALIDITY(HT, n, δ) 

1 for every node l in HT which is not leaf 

2 do for each tree Talt in created subtree 

3 do FINDSPLIT_VALIDITY(Talt, n, δ) 

4 if new attributeexists in node l 

5 do createnew subtree 

 

Fig. 2: EHT algorithm. 

 

 Figure 2 shows EHT algorithm thatcreates a 

model that learns inline with changing concepts and 
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keeps sufficient statistics  for M. It uses new samples 

as validation set to match the model performance 

created with new and old searches. Old model is 

pruned when new oneis better than old one and 

search can also be pruned. 

 

5. Experimental Results: 

 EHT use information gain as the G function and 

14 concepts with 2 classes and 100 binary attributes 

are used. The concepts were created by randomly 

generating decision trees.Figure 3 shows the 

accuracy of learners with respect to huge training 

samples. EHT was run with δ = 10
-7

, τ = 5%,nmin = 

200 and it can be noted from figure 3 that C4.5 

shows good accuracy till 25k examples after which 

accuracy of C4.5 and HT are similar. From figure it 

can be observed that the performance of EHT is 

much better than  C4.5 and HT. Figure 4 shows the 

tree size as a function of number of nodes and 

number of samples and clearly indicates EHT has 

more noise resistance. 

 For analyzing the efficiency of EHT, 160 million 

samples were generated from the (0.25, 0.10, 25209, 

12605) concept. Figure 5 compares EHT andC4.5 on 

this data set. C4.5 stops at 1 lakh samples but EHT 

progresses through million samples providing 0.58% 

accuracy initially that increases over time. 

 

 
 

Fig. 3: Accuracy % with respect to number of training examples. 

 

 
 

Fig. 4: Tree size as number of nodes vs number of samples. 

 

 
 

Fig. 5: EHT trained on 160 million examples. 

 

6. Conclusions: 

 This paper presented Hoeffding trees which is a 

state-of-art method for analyzing data streams. 

Hoeffding trees helps in fast learning ofsamples 

without much memory requirement as all the 

information is available in tree. Experimental studies 

show its effectiveness in taking advantage of massive 

numbers of examples.The enhanced EHT learns 

concept in changing domains and can also handle 

concept drift and has efficiently learned million 
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samples in very less time of 9428s. Future work 

include application of EHT to analyze Web log 

data,parallelizing EHT, intrusion detection and 

adapting EHT to learn evolving concepts in time-

changing domains. 
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