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This research work aims to propose a mechanism with improved preprocessing
technique for enzyme clustering. A robust ensemble mechanism is proposed in this
research work initially deals with the enhanced principal component analysis. Then the
objective function for the co-clustering ensemble towards application to enzyme

clustering is presented. A spectral co-clustering ensemble algorithm is described with
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constructive mathematical modeling followed with the brief algorithm description. The
proposed algorithm is capable enough to perform co-clustering with the objective
function as the primary component. Simulation results proved that the proposed
mechanism RECCA performs better in terms of accuracy and computation time.
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INTRODUCTION

Recently, there has been a common augment in
the amount of data publicly obtainable in wide-
reaching manner predominantly in the field of
Bioinformatics, where massive amounts of data have
been collected in the form of DNA sequences,
protein sequences and structures, information on
biological pathways, etc. This has shown the way to
varied and scattered sources of biological data.
Protein function prediction, and especially enzyme
function prediction is on the go Bioinformatics
research arena due to the exponential augment in the
number of proteins being discovered. This is due to
the sequenced genomes, to the difficulties in
experimentally characterizing enzyme function and
mechanisms, and to the potential biotechnological
use of newly discovered enzyme functions. With the
above mentioned aspects, prediction of protein’s
function is a firm job typically carried out by labor-
intensive experimental work or in a semi-automatic
manner by making use of sequence homology. This
research dimension is capable enough to profit from
clustering techniques, since they permit the creation
of groups of similar proteins that can be jointly
studied. The style in which biological information is
collected in using loads of dissimilar datasets
pretenses a research challenge for incorporating
clustering algorithms.

As an example, the Protein Data Bank (PDB) is
a repository of 3D structural data, has dozens or even
hundreds of entries for the same molecule.
Inconsistencies and redundancies are probably arise
due to the attributes representing a given concept
may have different names in different databases.
Conflicts between data values will also stay ahead, as
diverse sources may have unusual attribute values for
the same real-world object, due to different
representations, scaling or encoding. In this research
work robust ensemble co-clustering is introduced in
order to analyze how the integration of various data
sources in the form of constraints affects the success
of enzyme clustering, which might lead to important
information about the functions and structures of the
enzymes, as well as functional diversification
acquired throughout family evolution and to improve
the performance for the same.

The remarkable contributions of this paper are:

v' The knowledge of whether or not adding
information from external sources to the database is
able to improve the clustering quality for this
application;

v/ The lateral way for the collected
information to be transformed into constraint sets for
the meticulous biological problem;

v To perform co-clustering in order to
improve the performance by reducing the
computation time and increasing average accuracy
value.
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Literature Review:

Sugato Basu et al.,2004 proposed a probabilistic
model for semi-supervised clustering based on
Hidden Markov Random Fields (HMRFs) that
provides a principled framework for incorporating
supervision into prototype-based clustering. Bilenko
et al.,2004 proposed new methods for the two
approaches as well as presents a new semi-
supervised clustering algorithm that integrates both
of these techniques in a uniform, principled
framework. Klein et al.,2002 modified a constrained
clustering algorithm to perform exploratory analysis
on gene expression data using prior knowledge
presented in the form of constraints. Also authors
studied the effectiveness of various constraints sets.
Wagstan et al.,2001 demonstrated how the popular k-
means clustering algorithm can be profitably
modified to make use of this information. In
experiments with artificial constraints on six data
sets, authors observed some improvements in
clustering accuracy.

Erliang Zeng et al.,2007 modified a constrained
clustering algorithm to perform exploratory analysis
on gene expression data using prior knowledge
presented in the form of constraints. Authors have
studied the effectiveness of various constraints sets.
To address the problem of automatically generating
constraints from biological text literature, authors
considered cluster-based and method similarity-
based method. Shahreen Kasim et al.,2013 presented
a novel computational framework called the “multi-
stage filtering-Clustering Functional Annotation”
(msf-CIluFA) for clustering gene expression data. The
framework consists of fuzzy c-means clustering,
achieving dominant cluster, improving confidence
level components. In protein databases there was a
substantial number of proteins  structurally
determined but without function annotation.
Understanding the relationship between function and
structure can be useful to predict function on a large
scale. Marcelo Boareto et al.,2012 have analyzed the
similarities in global physicochemical parameters for
a set of enzymes which were classified according to
the four Enzyme Commission (EC) hierarchical
levels. Also by using relevance theory authors have
introduced a distance between proteins in the space
of physicochemical characteristics.

Due to inspiration by the principle of gene
transposon proposed by Barbara McClintock, a hew
immune computing algorithm  for automatic
clustering named as Gene Transposon based Clone
Selection Algorithm (GTCSA) proposed in this
Ruochen Liu et al.,2012. It does not require a prior
knowledge of the number of clusters; an improved
variant of the clonal selection algorithm used to
determine the satisfied number of clusters and the
appropriate partitioning of the data set as well. Clara
Higuera et al.,2013 proposed an expert system (ES),
making the main contribution, to cluster a complex

data set of 365 prokaryotic species by 114 metabolic
features, information which may be incomplete for
some species. Inspired on the human expert
reasoning and based on hierarchical clustering
strategies, Clara Higuera et al.,2013 proposed ES
estimates the optimal number of clusters adequate to
divide the dataset and afterwards it starts an iterative
process of clustering, based on the Self-organizing
Maps (SOM) approach, where it finds relevant
clusters at different steps by means of a new validity
index inspired on the well-known Davies Bouldin
(DB) index.

Rosfuzah Roslan et al.,2010 aimed at enhancing
the overlap between computational predictions.
Guoren Wang et al.,2010 explored a novel concept
of local conserved gene cluster (LC-Cluster). To
avoid the exponential growth in subspace search, we
further authors have presented two efficient
algorithms, namely falconer and e-falconer, to mine
the complete set of maximal LC-Clusters from gene
expression data sets based on enumeration tree.
Thanh-Phuong Nguyen and Tu-Bao Ho.,2012 have
presented a novel method to effectively predict
disease genes by exploiting, in the semi-supervised
learning (SSL) scheme, data regarding both disease
genes and disease gene neighbours via protein—
protein interaction network. Multiple proteomic and
genomic data were integrated from six biological
databases, including Universal Protein Resource,
Interologous Interaction Database, Reactome, Gene
Ontology, Pfam, and InterDom, and a gene
expression dataset.

Banerjee et al.,2004 introduce a partitional co-
clustering formulation that was driven by the search
for a good matrix approximation-every co-clustering
was associated with an approximation of the original
data matrix and the quality of co-clustering was
determined by the approximation error. Dhillon et
al.,2003 presented an innovative co-clustering
algorithm that monotonically increases the preserved
mutual information by intertwining both the row and
column clusterings at all stages. Bin Gao et al.,2006
proposed a consistent information theory which
generates an effective algorithm to obtain the co-
clusters of different types of objects. Inderjit Dhillon
et al.,2001 presented the novel idea of modeling the
document collection as a bipartite graph between
documents and words, using which the simultaneous
clustering problem can be posed as a bipartite graph
partitioning problem. To solve the partitioning
problem, authors used a new spectral co-clustering
algorithm that uses the second left and right singular
vectors of an appropriately scaled word-document
matrix to yield good bipartitionings.

Proposed Work:
The proposed research work initially deals with
the enhanced principal component analysis. Then the
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objective function for the co-clustering ensemble
towards application to enzyme clustering is
presented. A spectral co-clustering ensemble
algorithm  is  described  with  constructive
mathematical modeling followed with the brief
algorithm description. The proposed algorithm is
capable enough to perform co-clustering with the
objective function as the primary component.

Enhanced Principal Component Analysis:

An enhanced weighted version of PCA (EPCA)
is introduced where more importance is given to
observations whose values are more important. The
higher the absolute expression value the more
probable is that the meeting minutes are related to the
particular topic. To that end, this enhanced PCA uses
a new correlation coefficient that gives higher
weights to observations that are considered to be
more important. Also, the correlation coefficient is
sensitive to the presence of outliers and noise in the
data. The ranks of the observations are used. In the
meeting dataset ranking the observations for each
conversation from 1 (highest rank) to n (lowest rank)
is taken. The Pearson’s correlation coefficient of the
ranked data is thus obtained using the Spearman’s
rank correlation coefficient rg, which is given by the

expression

_ IE(R- RQ:i- Q)

VlfxrzliRi - R:FE:!: (Q: - Q}z (1)
where R and Q are the average ranks. However,
for computational purposes, a more convenient
expression which assumes there are no ties is

6Xi=(R; — Q)°

nd—n @)

It is clear from this rewritten form of rg that the
calculation of the distance between two ranks in
Spearman’s coefficient is given by
D =(R;— @y~

which does not take rank importance into
account, because if (R; — @;)is, for instance, (1, 3)
or (n- 2,n), the contribution is the same. The
following alternative distance measure is proposed:
WD=(R;— @)} ((n—-R;+1)+(n—0Q;+ 1))
WD?=D(2n+2—-R;,— Q,) 3)

The first term of this product is Df, exactly as in

Tz

r,=1-—

Spearman’s coefficient, and represents the distance
between R; and Q;; the second term is a linear
weighting function which represents both the
importance of R; and Q;. Hence the weighted rank
measure of correlation is obtained using

_— 6% (Ri- @) (2n+2-Ri- @,
¥ n*+nf-n’-n )
which vyields values between -1 and +1. The

calculation of the distance between two ranks R; and
Qi is given by

WDZ= (R, — @,)*(2n+2 —R;— Q;) where

the second term of the product is a linear weighting

function which represents the importance of R; and

Qi. Hence, the distance measure is

WoD; = (R;— Q;)*(2n+2 —R; — Q;)? ()
which reflects more than Tr-tr’L'lz.2 the higher

importance of agreement on top ranks. It is common
to define rank correlation coefficients, such as
Spearman’s, as a linear function of the distance
between the two vectors of ranks. In this research,
this correspongs to define a coefficient of the form

W,DI=A+ BZ(RE- - 0 (2n+2-R;- Q)
= (6)

where the conversations are such that it takes
values between -1 and +1. In order to find A and B,
we will start by doing a specific data transformation
and then compute the Pearson’s coefficient on the
transformed data. The expression obtained is exactly
of the form, from where the constants A and B
follow. The transformation consists in substituting
the value of observation i in the first variable by the
value of R; = R;(2n+ 2 — R;), where R; is the

rank of that observation. It is clear from above that
the computation of the new correlation coefficient is
equivalent to do a data transformation to each

variable as RE: =R;(2n+2—R.) and then

compute the Pearson’s correlation coefficient. R;
represents the rank of each observation value; usually
the smallest value has rank 1, the second smallest
rank 2, and so on (Uma and Suguna.,2015).

Objective Function For Co-Clustering Ensemble:

Given t partitions, with the gth partition
(u@,v@) having k'@ row clusters and
#9column clusters. T is defined as a consensus
function N&m=tmxth 5 NImn) manning a set of co-
clusterings to an integrated co-clustering:

T4 (ul@,v@) g€ {1, ..., e} = {(u,v)]

{(1@,v@)|q b (e -
Let the set of partitions

{(ﬂ':q}ﬂ_-:':q}}lq e, .., t}} be denoted by @. If

there is no background information about the relative
importance of the individual partitions, then a
reasonable goal for the consensus solution is to seek
a co-clustering that shares the most information with
the original co-clusterings.

In order to quantify the statistical information
shared between two co-clusterings, mutual
information is used as a symmetric measure in our
work. Here, the objective function is proposed by
adapting the original definition given in [Strehl and
Ghosh.,2003] to handle the problem of co-clustering
ensemble:
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t
(‘uJ T,?) ':k:h'p?ﬂ} = arg maxz 4}':""'-"'1.‘0 {(‘uJ i-":l, # ':q}J t:':q}]
= (@)

where (i, 17) % =2Pt) s the optimal combined

co-clustering and it is the one that has maximal
average mutual information with all individual
partitions in ¢ given that the number of consensus

row clusters desired is & and the number of column
clusters is L. In detail, the average normalized mutual
information (ANM1I) between a single co-clustering
{14, v7) and a set of t co-clusterings can be defined as

t
UMD (g, (1)) = %Z 89D (4 ), 9,09)
7=l (9)

As mentioned before, mutual information (MI)
is a symmetric measure and can be used to quantify
the statistical information shared between two
distributions. Thus, MI provides a sound indication

NMI((X,,X,),(Y,.Y,)) =

It is clear that NMI(X,,X,) =
rewritten as

NMI((x,.¥,) + NMI((X,¥,)) =

NMI (Y, Y,) =

of the shared information between a pair of co-

clusterings. The normalized mutual information
(NMI) is defined as )
X
NMI(X,Y) = ——
W H(X} H(Y} (10)

where X and Y denote two vectors, I{X,¥)
denotes the mutual information between X and Y.
H(X)denotes the entropy of X  and
H(X)=1(X,X). Suppose there are two co-
clusterings(X,., X.)
and (Y,,Y.),i.e., (X, ¥,.),(X.,¥.) denote the

row and column cluster labeling variables

respectively. Then, the NMI between two co-

clusterings can be defined as
(X, Y,) I(X:.Y)

VHXDHY,) JHOIH(Y,) (11)

1, as desired. According to Egs. (11), (9) can be further

HANMD (g, (1,v) ) = %Z £ (4, ), (@), @)
g=1

f'[j,&,#':q:'}

1v (
= - +
t; JHGHE)

;{m v'iq}} )

JH@)H (')

(12)

Eq. (12) needs to be estimated by the sampled quantities provided by the co-clusterings. Then, the
normalized mutual information estimate ¢ “¥*Dcan be defined as

p VD) ((‘u_ij vi), (u, 1’4"}) _
T 552 0, pl0g ('

qg,'imw} ({HEJH}'} ) + qg,'imw} ({.E,EJ vj})

Gl'gmﬁ'
o

G‘GE

|' , 04
WJ'(E’{ -10¢ log |a|)(2“}9& I"-"5?"|.ca|)

i { F|.F,
EE (i) EE (i) Gmglcg(l |. e.:_,g)
FiF;

o ) F
T

where | 2] and |F| denote the number of objects

and features in a cocluster respectively. (OL,ED
denotes the number of objects and features in co-
cluster €O, according to (g, %) and (G} F}}
denotes the number of objects and features in co-
cluster COg according to (p7, v7).

(13)
Spectral Co-Clustering Ensemble Algorithm For
Enzyme Clustering:

In this work, the final ensemble step can be
formulated as a partition problem on a bipartite
graph. For convenience of discussion, we use small-
bold letters such as u, v as vectors. Capital-bold
letters such as M, E, L will denote matrices, and
capital letters such as V, R will denote vertex sets.
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Denote the bipartite graph & = (1., 1,E)
containing two sets of vertices including row labeling
vertices ¥. and column labeling vertices V.

respectively. It is easy to verify that the adjacency
matrix M of the bipartite graph can be written as

[0 E
M= [ET a] (14)
where
e=[or &
Ccr Ccc (15)

Cy denotes the edge-weights between row
labeling vertices that are both in V, . C,, denotes the
edge-weights between labeling vertices with one in
V, and the other in V. . C; C are defined similarly
and C,. = CL. Let |E|;; denote the (ij)th element

of E.|E];; is the edge weight between two vertices

and can be obtained according to Eq.(13). More
specifically,

k'i} k' |G| GEE
log

|I k:]'E ] Gi
J(z 10 |a|)(E Gﬁ”m)
(16)

if the ith and jth vertices are both the row
labeling vertices for enzyme clusters;

E&:} EEIJ'} G |F|-F|:r.,,[?
F;'zg;‘

i F
|(EE }le lo ‘QIFI)(EN} Fj lo ‘QIFI)
\ )

if the ith and jth vertices are both the column
labeling vertices for enzyme clusters. Otherwise
|E];; =0

According to the bipartite graph &G = (1}, V., E)

given above, now we define the co-clustering
partition matrix Y as

r=ly] -

Bl =

Bl =

where ¥ is the partition on row labeling vertex
set V, and ¥, is the partition on column labeling

vertex set V. . Thus, the laplacian matrix L can be
defined as

L=D—-—M (19)
where
D, 0
p=[3 o)

D, and D.are diagonal matrices such that
|Dr|z’i :E}'Ei}ulﬂcl}j:EEE:‘j . Note that the

key step is to find the minimum cut vertex partitions

on the bipartite graph. The normalized-cut objective

function can be expressed as

; T

min tr{Y'LY) 1)
One way to solve the partition problem of the

bipartite graph is to compute the left and right

eigenvectors of the matrix A defined as

-1/2 ,~—1/2
A=D_ ""ED, 22)
After the left and right eigenvectors of matrix A

are obtained, the left and right eigenvectors of the
second to the (e + 1)th eigenvalues are selected as

U = [ua,1g, .., Uy sq] and
V = [vg,v3, .., Vy+1]  respectively. Here, the
w = log,k singular vectors Uz, Uz, ..., Ly +1, and
Uz, T3, ..., ¥y, 21 Often contain k-modal information

about the original co-clustering labeling. Thus, the k-
dimensional data matrix can be written as

X = {D; Y2 U]
I
(23)

C
At last, the classical k-means algorithm is
preformed on X, and the final consensus co-
clustering result is obtained.

Algorithm description:

According to the above inference, we design an
algorithm based on spectral method for enzyme co-
clustering ensemble. The algorithm procedure is
descried step by step as follows.

Algorithm (Spectral Co-Clustering Ensemble)
Input:

clusters in total)

co-clustering labeling are obtained.
02. Compute pairwise similarities of

04. Calculate A as defined in Eq. (16).

Egs. (10) and (11). Construct the adjacency matrices M.
03. Construct the diagonal matrices Dy, D where |D.|;; = X;E;;and | Dol ;; = X Ey;

Original data matrix X, .., num.of row clusters k,num. of column clusters£(i.e.,K % {fco

01. Divide X5 into k row clusters and £ column clusters by the co-clustering algorithms and the base

base co-clustering labelling according to
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05. Perform singular value decomposition (SVD) on matrix A. Compute w = logsk singular vectors of
A, Ug, ..Uy sqand Vg,...V,:1. Denote the left and right eigenvectors of the 2nd to the (& + 1)th
eigenvalues as U and V respectively.

06. Construct X,. = D;l’TU and X, = D:l’TV.

07. Run k-means algorithm on the x-dimensional data X-to get the row labelings partition matrix ¥;
Similarly get ¥, from X .

Output:
The final consensus co — clustering result,

It can be observed that the main computational Several datasets have been taken for the
cost is to perform SVD on the matrix A on Step 5. performance analysis. The datasets for text pairwise
Consider Lanczos algorithm to compute the coclustering is shown in Table 1. The datasets for
eigenvectors [Shi et al., 2010]. The complexity of Text  High-Order  (Word-Document-Category)
our algorithm is O(eN (|m| + |n|)?, where e is the coclustering is presented in Table 2. The datasets for

number of eigenvectors desired, N is the number of gene  expression  pairwise  (Condition-Gene)
Lanczos iteration steps and (|lm|+ |n|)? is the coclustering is given in Table 3. The datasets for

. . Image High-Order (Color-Image-Texture)
upper bound of the nonzero entries of matrix M. coclustering is depicted in Table 4
More performance in detail are recorded in the next '
section.

About The Dataset:

Table 1: Data Sets for Text Pairwise (Document-Word) Coclustering

Name | Datasets | Data Structure No. of No. of documents
clusters

CT1 oh15 Adenosine-Diphosphate, Blood-Vessels 2 154

CT2 oh15 Aluminium, Blood-Coagulation-Factors 2 122

CT3 re0 Interest, reserves 2 261

CT4 re0 housing, jobs 2 55

CT5 re0 housing, interest, jobs 3 274

CT6 oh15 Aluminium, Blood-Vessels, Leucine 3 207

CT7 re0 cpi, housing, ipi, lei, retail 5 144

CT8 re0 bop, cpi, gnp, housing, interest, ipi, jobs, lei, money 10 1150

Table 2: Data Sets for Text High-Order (Word-Document-Category) Coclustering
No. of | No. of

Name | Datasets Data Structure clusters documents

HT1 oh15, re0 { Adenosine-Diphosphate, Aluminium, Cell-Movement}, {cpi,money} 2 899

HT2 oh15, re0 {Blood-Coagulation-Factors, Enzyme-Activation, Staphylococcal- | 2 461
Infections}, {jobs,reserves}

HT3 oh15, re0 {Aluminium, Blood-Coagulation-Factors, Blood-Vessels}, {housing,retail} 2 256

HT4 oh15, re0 {Aluminum, Cell-Movement, Staphylococcal-Infections}, {cpi, jobs} 2 391

HT5 WAP, re0 {media, film, music}, {cpi, jobs} 2 404

HT6 Newsgroup | {rec.sport.baseball, rec.sport.hockey}, {talk.politics.guns, | 2 500
talk.politics.mideast,talk.politics.misc}

HT7 Newsgroup | {comp.graphics, comp.os.ms-windows.misc}, {rec.autos,rec.motorcycles}, | 3 300
{sci.encrypt, sci.electronics}

HT8 Newsgroup | { comp.graphics, comp.os.ms-windows.misc}, {sci.electronics, sci.med} 2 3932

HT9 Newsgroup | {rec.autos, rec.motorcycles, rec.sport.baseball}, {sci.crypt, sci.electronics, | 2 5942
sci.space}

Table 3: Data Sets for Gene Expression Pairwise (Condition-Gene) Coclustering

Name Datasets Data Structure No. of clusters No. of documents

BT1 ALL/AML ALL, AML 2 72

BT2 Breast Cancer Relapse, Non-relapse 2 97

BT3 Central Nervous Classl, Class2 2 60

BT4 Colon Tumor Positive, Negative 2 62

BT5 Lung Cancer MPM, ADCA 2 181

BT6 Ovarian Cancer Cancer, Normal 2 253

BT7 ALL/MLL/AML ALLMLL,AML 3 72
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Table 4: Data Sets for Image High-Order (Color-Image-Texture) Coclustering

Name | Datasets No. of Modalities No. of | No. of
clusters documents
IT1 eggs,decoys 3 2 200
IT2 dawn,foliage 3 2 200
IT3 decoys,dawn 3 2 200
IT4 decoys, firearms,cards,buses 3 4 400
IT5 abstract,dawn,foliage,waves 3 4 400
IT6 eggs,decoys,dawn, foliage 3 4 400
IT7 eggs,decoys,buses,abstract,texture,dawn 3 6 600

RESULTS AND DISCUSSIONS

Performance of RECCA is made a comparison
with  Semisupervised Non-negative ~ Matrix
Factorization (SS-NMF) (Yanhua Chen et al., 2010),
Non-negative Matrix Factorization (NMF) (Xu et
al.,2003), Combinatorial Markov Random Field
(CMRF) (Bekkerman and  Jeon,  2007),
Semisupervised Combinatorial Markov Random
Field (SS-CMRF) (Bekkerman and Sahami, 2006),
Spectral Relational Clustering (SRC) (Long et
al.,2006) and Transductive Support Vector Machines
(TSVM) (Joachims.,1999) in terms of accuracy and

computation time. Figure 1 uses the Text Pairwise
(Document-Word) Coclustering datasets depicted in
Table 1. Figure 2 uses the Gene Expression Pairwise
(Condition-Gene) Coclustering datasets depicted in
Table 3. Figure 3 uses the Text High-Order (Word-
Document-Category) Coclustering datasets depicted
in Table 2. Figure 4 uses the Image High-Order
(Color-Image-Texture) Coclustering datasets
depicted in Table 4.

The experiments are performed on a Windows
8.1 machine with Intel Core i3 processors and 4 GB
DDR 11l RAM. The experiments on algorithms are
evaluated using MATLAB R2012a.

Eang = | jmEd
Fie Edt View Jmet ook Deskiop Window Help -
G IR TP R =T

Comarison of Average Accuracy for Text Data

b T T 1

Average Accuracy Value

Percentage of Constrained Pairs{datasets CT1-CT)

Fig. 1: Comparison of Average Accuracy for Text Data

Figure 1 shows the performance evaluation of
average accuracy for text data. It is evident that the
proposed RECCA mechanism using Enhanced PCA

Table 5: Comparison of Average Accuracy for Text Data

outperforms other mechanisms in terms of document
clustering performance with least prior knowledge.
The performance values are depicted in Table 5.

Algorithms

Percentage of TSVM SS-KK SS-CMRF SS-NMF RECCA
Constrained Pairs

0% 0 0.52 0.56 0.63 0.66
0.5% 0.51 0.57 0.58 0.76 0.79
1% 0.54 0.58 0.62 0.78 0.81
3% 0.59 0.61 0.66 0.82 0.84
5% 0.61 0.64 0.7 0.87 0.89
10% 0.64 0.69 0.77 0.89 0.91
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B =1
Fle Edt View Iset Tools Desdop Window Help 3
NEAS| kA ODRL- A 0E) D

Average Accuracy Value
&
T

|

i | |

1% ¥
Percentage of Constrained Pairs(datasets BT1-8T7)

Fig. 2: Comparison of Average Accuracy for Gene Expression Data

Figure 2 presents the performance evaluation of terms of increasing percentage of pairwise
average accuracy for gene expression data. It is most constraints for semisupervised condition
visible that the proposed RECCA mechanism using coclustering. The performance values are depicted in
Enhanced PCA outperforms other mechanisms in Table 6.

Table 6: Comparison of Average Accuracy for Gene Expression Data

Algorithms
Percentage of TSVM SS-KK SS-CMRF SS-NMF RECCA
Constrained Pairs
0% 0 0.54 0.66 0.59 0.61
0.5% 0.48 0.57 0.69 0.78 0.8
1% 0.54 0.59 0.73 0.8 0.83
3% 0.58 0.62 0.76 0.83 0.87
5% 0.62 0.67 0.79 0.86 0.89
10% 0.67 0.71 0.82 0.88 0.92
E;wgurel o | &
Eile Edit View Inset Tools Desktop Window Help -
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Fig. 3: Comparison of Average Accuracy — Text High Order Coclustering
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Figure 3 presents the performance comparison of
average accuracy for text high order coclustering. It
is most obvious that the proposed RECCA

mechanism using Enhanced PCA outperforms other
mechanisms. The performance values are depicted in

Table 7.

Table 7: Comparison of Average Accuracy — Text High Order Coclustering

Algorithms

Percentage of SS-CMRF SS-NMF RECCA

Constrained Pairs

0% 0.48 0.52 0.54

1% 0.51 0.56 0.59

3% 0.54 0.59 0.62

8% 0.57 0.62 0.65

13% 0.6 0.67 0.69

15% 0.64 0.72 0.76
E=- =0

Fle Edt View Inset Tools Desktop Window Help kY

N8de|k 86984 3|06 a0

(Comparison of Average Accuracy - Image High Order Coclustering

Average Accuracy Value

E}

3

Percentage of Constrained Pairs{datasets HT1-HT9)

Fig. 4: Comparison of Average Accuracy — Image High Order Coclustering

Figure 4. presents the performance comparison

of average accuracy for

image

high order

coclustering. It can be perceived that the proposed

RECCA  mechanism

using

outperforms other mechanisms.
values are depicted in Table 8.

Table 8: Comparison of Average Accuracy — Image High Order Coclustering

Enhanced PCA
The performance

Algorithms

Percentage of SS-CMRF SS-NMF RECCA
Constrained Pairs

0% 0.67 0.68 0.7

1% 0.69 0.69 0.72

3% 0.72 0.72 0.75
8% 0.76 0.77 0.79
13% 0.78 0.79 0.82
15% 0.81 0.82 0.85
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Fig. 5: Comparison of Computational Speed - In Log(Seconds) For Increasing N

Figure 5 presents the performance of approach delivers significant better performance over
computational time (number of samples in the central other methods. The performance values are depicted
data type - N.) and the results proved that the in Table 9.
proposed RECCA mechanism using Enhanced PCA

Table 9: Comparison of Computational Speed - In Log(Seconds) For Increasing N

Algorithms
Percentage of NMF SS-NMF RECCA CMRF SS-CMRF SRC
Constrained Pairs
1000 0.05 0.23 0.21 3 6 10
1500 0.2 0.45 0.38 9 48 62
2000 01 0.56 0.52 34 69 89
2500 0.4 0.62 0.57 52 82 172
3000 0.52 0.84 0.74 92 107 352

T ==Ed
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Fig. 6: Comparison of Computational Speed - In Log(Seconds) For Increasing N,
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Figure 6 presents the performance of
computational time (the maximum feature dimension
for all feature modalities - Np) and the results proved
that the proposed RECCA mechanism using

Enhanced PCA approach delivers significant better
performance over other methods. The performance
values are depicted in Table 10.

Table 10: Comparison of Computational Speed - In Log(Seconds) For Increasing N,

Algorithms NMF CMRF SS-CMRF SS-NMF SRC RECCA
Percentage of
Constrained Pairs
100 0 0 0 0 3.8 4.2
200 0.2 0.9 1.1 1.2 3.9 43
300 0.2 1.2 1.22 1.3 42 4.6
400 0.1 1.3 1.9 2.1 47 49
500 0.2 1.8 2.2 2.9 5 5.2
600 0.3 2.5 2.8 3.8 6.3 6.6
700 0.4 3.3 3.7 4 8.9 9.2
800 0.2 45 438 5.6 13.6 13.8
900 0.4 6.8 7 8.1 17.9 18.2
1000 0.2 7.9 9 10.9 20 20.8
Conclusion: Clara Higuera, Gonzalo Pajares, Javier
This paper presented a mechanism with Tamames, Federico Moran, 2013. Expert system for

improved preprocessing technique for enzyme
clustering. Initially the proposed work RECCA deals
with the enhanced principal component analysis for
preprocessing. The objective function for the co-
clustering ensemble towards application to enzyme
clustering is presented and also described. The
objective function plays a major role which can
perform co-clustering. Simulation results show that
the proposed mechanism RECCA performs better in
terms of accuracy and computation time. Regarding
the future direction of this work, RECCA can be
hybrid with optimization techniques for the much
better performance of accuracy and computation
time.
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