Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

ISSN:1991-8178

Australian Journal of Basic and Applied Sciences

Journal home page: www.ajbasweb.com

\

Ausrtralian

Journal of

Basic and Applied Sciences

AENSI Publisher

JBAS™

A Survey of Skyline Computing Algorithms

IA. Sairam and ?Dr. C. Suresh Gnana Dhas

!Research Scholar, Department of Computer Science and Engineering, Manonmaniam Sundaranar University, Tamilnadu
2professor & HOD, Department of Computer Science and Engineering, Vivekananda Engineering College for Women, Tamilnadu

ARTICLE INFO

ABSTRACT

Article history:

Received 28 January 2015
Accepted 25 February 2015
Available online 6 March 2015

Skyline queries are receiving interesting attention to the large database and data mining
field and its main advantage is it is used for multi-criteria decision making and
identifying interesting tuples with overall low formulation. Skyline queries mean it
exposes a set of non-dominated points or better points from the given data points. This

survey gives an overview about the existing algorithms of skyline computing

Keywords: technique.

© 2015 AENSI Publisher All rights reserved.

To Cite This Article: A. Sairam and Dr. C. Suresh Gnana Dhas, A Survey of Skyline Computing Algorithms. Aust. J. Basic & Appl. Sci.,

9(10): 203-210, 2015

INTRODUCTION

The skyline operator have more reasonable
attention due to its multi-criteria decision making,
user preference queries and data mining approach in
most of the application. Given a hotel database d1,
and it has a set of objects ¢/,¢2,...qn. (Borzsonyi,
2001) an object qi is said to be in skyline of di, if
there is no other object qj in d1 such that qgj is better
than gi in all dimensions. If there is exist such a g],
then we say that gi is dominated by qj, or gj
dominates q i.

Most commonly using example in the literature
is Holiday resort or Hotels for holiday destination,
assume in figure 1.1.we have a set of hotels with its
distance (x axis) and rate (y axis) from the beach.
The most interesting hotels b, j and k for which there
is no point that is better on both dimensions
(Papadias, 2005).For instance, Hotel a in Figure 1.1
(Papadias, 2005) is better than hotels b and e is
nearest to the beach and low-cost in price.

The big deal in the skyline queries is to finding
skylines over high dimensional databases. Most of
the existing skyline algorithms are work efficiently
with the small database with low dimension. In this
paper we try to expose the skyline algorithms for
high dimensional database. Major leading problems
such as Top-K queries, convex hull, nearest neighbor
search. For the convex hull contains the subspace of
skyline points that may be excellent only for linear

functions, and the Top-K (or ranked) queries recover
the best K objects that minimize a set the desire
function. Nearest neighbor queries indicates a query
point q and output the objects nearer to ¢, in
increasing order of their distance.

Fig. 1.1: Example dataset and skyline.

Analysis of skyline algorithms:

In this section we discuss about the classification
of skyline algorithms and its advantages and
disadvantages.

1) Sort based skyline algorithms
a. Bitmap algorithm

b. Index Algorithm

c. Sort first skyline algorithm(SFS)
d. LESS

e. SalLSa

Corresponding Author: A. Sairam, Research Scholar, Department of Computer Science and Engineering, Manonmaniam

Sundaranar University, Tamilnadu.

E-mail: a.sairam@yahoo.co.in

204 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

2) Divide and- conquer algorithms

3) Hierarchical Index- based algorithms
R-Tree

Nearest Neighbor

Block Nested Loop (BNL)

B-Tree

ZB-Tree

Z-Sky

Zinc

OCmPTwpe

1) Sort Based Skyline Algorithms:

Sort based algorithm (Dimitris Papadias, 2003)
efficiently reduce the number of possibility objects
and reduce the computing price. Which is used to
sort the dataset objects based on analysis situs with
comparable to decreasing and increasing marks of a
monotone function, the calculation based on the
skyline becomes forthright because objects below a
certain threshold cannot be a part of the skyline. The
key doctrine element affecting the performance of the
sorting based algorithm is the choice of the sorting
function and the threshold. However, this requires
high-cost sorting process to prune the non-skyline
object. Some more sort based algorithms are as
follows.

Table 2.1: The bitmap approach.

id | Coordinate bitmap representation

a (1.9) (1111111111, 1100000000)
b (2,10) (1111111110, 1000000000)
c (4,8) (1111111000, 1110000000)
d (6.7) (1111100000, 1111000000)
e (9.10) (1100000000, 1000000000)
f (7.5) (1111000000, 1111110000)
g (5.6) (1111110000, 1111100000)
I (4,3) (1111111000, 1111111100)
i (3.2) (1111111100, 1111111110)
k 9.1) (1100000000, 1111111111)
/ (10,4) (1000000000, 1111111000)
i (6.2) (1111100000, 1111111110)
i (8,3) (1110000000, 1111111100)

a. Bitmap algorithm:

A Bitmap[12] approach encodes in bitmaps of
all the information needed to decide whether a point
is in the skyline. A data point g = (g1, g2,..., qn) and
where d is the number of dimensions, is mapped to a
m-bit vector, where m is the total number of distinct
values over all dimensions.

Let ki be the total number of distinct values on
the i-th dimension (i.e., m=Xi=1~dki). In Figure 1.1,
for example, there are k1=k2=10 distinct values on
the x-, y-dimensions and m=20. Estimate that qi is the
ji-th smallest number on the i-th axis, then, it is
represented by ki bits, where the leftmost (ki — ji +1)
bits are 1, and the remaining ones 0.

Table 2.1 shows the bitmaps for points in Figure
1.1. Since point a, has the smallest value (1) on the x-
axis, all bits of al are 1. Similarly, since a2 (=9) is
the 9-th smallest on the y-axis, the first 10-9+1=2

bits of its representation are 1, while the remaining
ones are 0.

Consider that we want to decide whether a points
c with bitmap representation (1111111000,
1110000000), belongs to the skyline. The rightmost
bits equal to 1, are the 4th and the 8th, on dimensions
x and y, respectively. The algorithm creates two bit-
strings, ¢X = 1110000110000 and cY =
0011011111111,by juxtaposing the corresponding
bits (i.e., 4th and 8th) of every point.

These bit-strings (Shown in bold) contain 13 bits
(one from each object, starting from a and ending
with n). The 1's in the result of cX &
cY=0010000110000, indicate the points that
dominate c, i.e., ¢, hand i.

The main advantage of this approach is instantly
return the first few skyline points based on their
insertion order, and the major drawback is
Expensive, because each point is inspected. Space
consumption is high. This approach is not suitable for
dynamic datasets where insertions may alter the
rankings of attribute values.

b. Index algorithm:

The “index” approach (Papadias, 2005)
coordinates a set of d-dimensional points into d lists.
A set of d-dimensional points into d lists such that a
point g = (g1, g2, ..., qn) is assigned to the i-th list
(1<i<d), if and only if its coordinate pi on the i-th
axis is the minimum among all dimensions, or
formally, qi<qj for all j#i. Initially, the algorithm
loads the first batch of each list, and handles the one
with the minimum minC.

A set of d-dimensional points into d lists such
that a point q = (g1, g2, ..., qd) is assigned to the i-th
list (1<i<d), if and only if its coordinate gi on the i-th
axis is the minimum among all dimensions, or
formally, qi<qj for all j#i. Initially, the algorithm
loads the first batch of each list, and handles the one
with the minimum minC. In Table 2.2, the first
batches {a}, {k} have identical minC=1, in which
case the algorithm handles the batch from list 1.

Processing a batch involves,

(i) Computing the skyline inside the batch,

(i) Among the computed points, it adds the ones not
dominated by any of the already-found skyline points
into the skyline list.

Table 2.2: The index approach.

list 1 list 2
a(l,9) | minC=1 09, 1) minC=1
HQR.LW | minC=2 | i(3.2).m(6,2) min(C=2
c(4, 8) minC=4 | h{4,3),n(8,3 min(=3
£(5,6) min(C=5 7(10, 4) min(=4
di6, 7 minC=6 F(7.5) min(’=5
e(9.10) | minC=9

Points in each list are sorted in ascending order
of their minimum coordinate (minC, for short) and
indexed by a B-tree.

205 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

Since batch {a} contains a single point and no
skyline point is found so far, a is added to the skyline
list. The next batch {b} in list 1 has minC=2, thus,
the algorithm handles batch {k} from list 2. Since k is
not dominated by a, it is inserted in the skyline.
Similarly the next batch handled is {b} from list 1,
where b is dominated by point a (already in the
skyline).

The algorithm proceeds with batch {i,m},
computes the skyline inside the batch that contains a
single point i (i.e., | dominates m), and adds i to the
skyline. At this step the algorithm does not need to
proceed further, because both coordinates of i are
smaller than or equal to the minC (i.e., 4, 3) of the
next batches (i.e., {c}, {h,n}) of lists 1 and 2.All the
remaining points (in both lists) are dominated by i
and the algorithm terminates with {a, i, k}.

The merits of the index approach is quickly
return skyline points at the top of the lists, and the
demerits are with the bitmap approach, the order that
the skyline points are returned is fixed, not
supporting user-defined options and the lists figure
out for d dimensions cannot be used to fetch the
skyline on any subset of the dimensions.

c. Sort first algorithm:

The SFS[1] variation of BNL (B6rzsonyi, 2001)
lightens these problems by first sorting the entire
dataset according to a (monotone) preference
function.

Possibility points are added into the list in
ascending order of their scores, because points with
lower scores are likely to dominate a large number of
points, thus rendering the pruning more effective.

Based on figure 1.1 dataset points, SFS show the
dynamic behavior because the pre-sorting ensures
that a point p dominating another g' must be visited
before ¢, hence we can immediately output the
points inserted to the list as skyline points.

First SFS has to scan the entire data file to return
a complete skyline, because even a skyline point may
have very large score and thus appear at the end of
the sorted list. Main merits are SFS can efficiently
reduce the number of possibility objects and thus
reduce the computing cost, and the key affecting
factor is the choice of the sorting function and the
threshold. It requires high-cost sorting process to
prune non-skyline objects.

d. LESS:

LESS (Linear Elimination Sort for Skyline)
(Godfrey, 2007) is the combination of Sort First
Skyline(SFS) and Block Nested Loop(BNL)
(BOrzsonyi,2001). Thus LESS sorts the records first,
then filters the records via a skyline-filter (SF)
window, as does SFS.

LESS makes two major changes:
1. It uses an elimination-filter (EF) window in pass

zero of the external sort routine to eliminate records
quickly, and

2. It combines the final pass of the external sort with
the first skyline-filter (SF) pass. The external sort
routine used to sort the records is integrated into
LESS.

Let b be the number of buffer pool frames
allocated to LESS. Pass zero of the standard external
sort routine reads in b pages of the data, sorts the
records across those b pages (say, using quick sort),
and writes the b sorted pages out as a b-length sorted
run.

All subsequent passes of external sort are merge
passes. During a merge pass, external sort does a
number of (b — 1)-way merges, consuming all the
runs created by the previous pass. For each merge,
(up to) b — 1 of the runs created by the previous pass
are read in one page at a time, and written out as a
single sorted run. LESS additionally eliminates
records during pass zero of its external-sort phase. It
does this by maintaining a small elimination-filter
window. Copies of the records with the best entropy
scores seen so far are kept in the EF window. The EF
window acts similarly to the elimination window used
by BNL. In effect, LESS has all benefits of SFS’s
with no disadvantages. LESS should normally
perform better than SFS. Some buffer-pool space is
allocated to the EF window in pass zero for LESS
which is not for SFS.

Therefore, the initial runs produced by LESS’s
pass zero are smaller than SFS’s, this may sometimes
force that LESS will require an additional pass to
complete the sort. Of course LESS saves a pass since
it combines the last sort pass with the first skyline
pass. LESS also has advantages of BNL’s advantages
and effectively none of its disadvantages.

BNL has the top of tracking when window
records can be promoted as known maximals. LESS
does not need this. Maximals are classified more
efficiently once the input is effectively sorted. Thus
LESS has the same advantages as does SFS in
comparison to BNL.

e. SalLSa:

SalL.Sa (Sort and Limit Skyline algorithm) (llaria
Bartolini), is differs from other collective algorithms
in that it consistently limits the number of points on
which dominance tests need to be executed. If the
input relation r is sorted according to a suitably
chosen monotone function, then it is possible to
determine the skyline of r without applying the
skyline filter to all the points. In general, this might
highly reduce the number of tuples to be read and,
depending on the specific instance and sorting
function; it might reduce the number of dominance
tests as well.

Since Sal.Sa shares with SFS the idea of
presorting the input relation, it also keeps all the SFS
strengths: simplified management of the window,

206 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

incremental delivery of results, and optimal number
of passes of the filter phase. We illustrate how Sal.Sa
works when a single pass is sufficient to complete the
evaluation. Extension to the case where skyline size
exceeds the available main memory is managed as in
SFS, and not reported here for brevity.

SalLSa starts by initializing to r the set u of
unread tuples. It also makes use of a stop point,
pstop, which is used to earlier terminate reading
tuples. Step 2 sorts u according to decreasing values
of a monotone function F. This is actually done by
issuing the following standard, i.e., non-skyline,

: S0 U —r, stop — false, pyop ~— undefined
scrt U according to F
while not stop A U # 0 do
P~ get next point from U, U — U\ (p}
if S ¥ p then § — SU{p}, update p,iop
if Dutop > U then stop — true
return S
gorithm 1.1: SalLSa

LAl R S
e we e

e

A

Each time a new point p is read from u, p is
compared against the current skyline S. If none of the
points in S dominates p (i.e., S __ p), p is inserted
into S. This might possibly trigger the update of the
stop point (step 5). At step 6 SaLSa checks if it has
gained sufficient evidence to conclude that no further
point in u can be part of the skyline, i.e., all points in
u are dominated by pstop (pstop _ u).If this is so, the
algorithm terminates.

2) Divide and- conquer algorithms:

Divide and- conquer (Borzsonyi, 2001), Divide
the large dataset into several smaller partitions.
Continue till each smaller partition of the dataset fits
in the main memory figurel.2 (a). Compute partial
skylines in each partition. Compute global skylines
by merging them. Calculate the median mp (or some
approximate median) of the input for some dimension
dp. Divide the input into two partitions.

1. P1 contains all tuples whose value of attribute dp
is better than mp.
2. P2 contains all other tuples.

=]

OT L FH [
[
»
N o
3 qe & & L]
L
L . -
1 - ", . - L
...... A - ———p
[slarcn D starige

Fig. 1.2: a) Partition of the dataset b) Partial Skyline
for each partition.

The data space is divided into 4 partitions s1, s2,
s3, s4 as show in the figure 1.2 (b), with partial

skylines {a,c,0}, {d}, {i}, {m,k}, respectively.
Compute the Skylines S1 of P1 and S2 of P2. This is
done by periodically applying the whole algorithm to
P1and P2 i.e., P1 and P2 are again partitioned.

The recursive partitioning stops if a partition
contains only one (or very few) tuples. In this case,
computing the Skyline is trivial. Compute the overall
skyline result by merging of S1 and S2.By
eliminating those tuples of S2 which are dominated
by tuple in S1.

To getting the final skyline, we need to remove
the points that are dominated by some point in other
partitions. Points ¢, g are removed because they are
dominated by i. Finally, the algorithm terminates with
the remaining points {a,i,k}.the attractive feature of
D&C is very fast compare to other algorithm and this
also has some demerits they are very sensitive to
main memory size and the dataset characteristics.

3) Hierarchical Index- based algorithms:

The Hierarchical index-based algorithm has two
classifications: one is most popular index structure,
as B-Tree and the other is R-Tree.

1) By the use of popular index structures, such as
B-tree and R-tree (Theodoridis, 2000) presents a
genuine way to totally minimize the size of a skyline
possibility set.

2) The dataset points that are nearer the base point
have higher chance of being the skyline. Thus, the
computation of the skyline can be implemented
through k nearest neighbor search (kKNN) (Kossmann,
2002).

The advantage of hierarchical index-based
approach is its forward looking behavior that can
quickly return the initial results without having to
scan the entire dataset. This method also has some
other built-in setbacks, by restrain their usefulness to
only some cases. This approach adopts sophisticated
techniques such as the smart partitions of B-tree
index, the clever use of R-tree and the intelligent use
of multicore architectures (Lee, 2007) to accelerate
the skyline computation by parallelizing the most
CPU-intensive parts, the dominance tests, as well as
the fundamental limitation of hierarchical index
based solutions.

a. R-Tree:

R-trees (Mehdi Sharifzadeh, 2010) for indexing
multi-dimensional data marked a new generation in
developing innovative R-tree-based algorithms for
various forms of Nearest Neighbor (NN) queries.
These algorithms utilize the simple rectangular
grouping principle used by R-tree that represents
close data points with their Minimum Bounding
Rectangle (MBR). R-tree is a height-balanced tree
similar to a B-tree with index records in its leaf nodes
containing pointers to data objects Nodes correspond
to disk pages If the index is disk-resident, and the
structure is designed so that a spatial search requires

207

A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

visiting only a small number of nodes The index is
completely dynamic; inserts and deletes can be
intermixed with searches and no periodic
reorganization is required.

Nearest Neighbor (NN):

NN uses the results of nearest neighbor search to
partition the data universe recursively. Consider the
application of the algorithm to the dataset of Figure
1.1, which is indexed by an R-tree (Theodoridis,
2000). Find nearest neighbor point with minimum
distance (mindist) from the beginning of the axis
(point o) to create skyline.

Prune all the points in the dominance region of
this point Divide the space by the nearest neighbor
point. Partitions are inserted into a to-do list.
Compute recursively until empty space. Consider the
application of the algorithm to the dataset of Figure
1.1, which is indexed by an R-tree.for more instance,
assumes that a spatial index structure on the data
points is available for use.

Identifies skyline points by repeated application
of a nearest neighbor search technique on the data
points, using a suitably defined L; distance norm. The
nearest neighbor in the data-point is as it is closest to
the origin when an L, distance measure is assumed as
like in the figure 1.3.

e Divides the space into 2° non-disjoint region,
which now must now be recursively searched for
more skyline points.

e However, region 4 and 2 need not be searched.
The rest of the2%-2 regions need to be searched

o No closer point than i in 2 (by virtue that i is the
nearest neighbor to the origin). Any data-point in the
space 2 is dominated by i.

Frico

Fig. 1.3: NN algorithm Skyline.

e Recursively apply the search on region-1. The
nearest neighbor in region- 1would be a, explode
region to form additional regions .region- 4 is added
to the pruned region and need not be searched the
number of unexplored regions grow rapidly O
(dataset). The non-disjoint condition is relaxed for
high-dimensional datasets.

The partitions resulting after the discovery of a
skyline point are inserted in a to-do list. While the to-

do list is not empty, NN removes one of the partitions
from the list and recursively repeats the same
process. The merits are fast running time to finding
the first result and Progressiveness. And the demerits
are Redundant 1/0 computation, Gets worse as
dimensionality increases Explosive to-do list size

ii. Block Nested Loop (BNL):

Block Nested Loop (BNL (Godfrey, 2007) a
honorable method to calculate the skyline is to
compare each point g with every other point; if q is
not dominated, then it is a part of the skyline. BNL
builds on this concept by scanning the data file and
keeping a list of candidate skyline points in main
memory. The first data point is inserted into the list.
For each subsequent point g, there are three cases:

(i) If p is dominated by any point in the list, it is
discarded as it is not part of the skyline.

(ii) If p dominates any point in the list, it is inserted
into the list, and all points in the list dominated by p
are dropped.

(iii) If p is neither dominated, nor dominates, any
point in the list, it is inserted into the list as it may be
part of the Skyline.

The list is self-organizing because every point
found dominating other points is moved to the top.
This reduces the number of comparisons as points
that dominate multiple other points are likely to be
checked first. A problem of BNL (Borzsonyi, 2001)
is that the list may become larger than the main
memory. When this happens, all points falling in
third case (cases (i) and (ii) do not increase the list
size), are added to a temporary file.

This fact necessitates multiple passes of BNL. In
particular, after the algorithm finishes scanning the
data file, only points that were inserted in the list
before the creation of the temporary file are
guaranteed to be in the skyline and are output. The
remaining points must be compared against the ones
in the temporary file. Thus, BNL has to be executed
again, this time using the temporary (instead of the
data) file as input. The advantage of BNL is its wide
applicability, since it can be used for any
dimensionality without indexing or sorting the data
file. Its main problems are the reliance on main
memory and its inadequacy for on-line processing
because it has to read the entire data file before it
returns the first skyline point.

a. B-Tree

The Calculation of the skyline can also be
facilitated by using Hierarchical index structures. In
(Borzsonyi, 2001), a method based on B-tree was
described. Assuming that each record has d
dimensions and there is an index for every
dimension, the skyline can be calculated as follows.
e Scan the entire indexes simultaneously to and
first match, i.e., the first record to be seen by all the
indexes during the scan. (Table 1.1)

208 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

e The first match is absolute part of the skyline
and can be returned immediately, providing a fast
initial response.

e Scan the rest of the index entries of the first
dimension's index. If the record has not been seen
before (i.e., the index entries of this record in the
other indexes have not been examined prior to the
first match), it is definitely not in the skyline and can
thus be eliminated. If any of the other indexes contain
an index entry to this record prior to the first match,
then the record may or may not be in the skyline. To
determine whether it is in the skyline, an existing
skyline computation algorithm can be applied.

Table 1.1: B-Tree scanning the data list.

horel | price horel | disrance
R: || $2s5 Bz || 0.1 miles
Py 527 ho 0.2 miles
Fras, %30 Fiyn || 0.3 miles
Fra %35 Fes 0.3 miles
J T 540 Hy 0.7 miles
Fgs 70 ey 1.0 miles

A critical factor that will affect the performance
of this algorithm is how fast the first match can be
found. If a match is found late (which is likely to be
the case for large number of dimensions), it will
result in a high initial response time. Nevertheless,
we can expect this algorithm to perform well in
general, when the skyline is small and the first match
can be found quickly.

i. ZB-Tree:

ZB-tree method (Lee, 2007), This method is
designed for data where all the attributes have TO
domains. It first maps each multidimensional data
point to a one-dimensional Z-address according to Z-
order curve by interleaving the bit string
representations of the attribute values of that point.

For instance, given a 2D data point (0,5), its
bitstring representation is (000,101) and its Z-address
is (010001). Figure 1.4(a) depicts an example of Z-
order curve on the set of 2D data points shown in
Figure. 1.1. By ordering data points in non-
descending order of their Z-addresses, ZB-tree has
two very useful properties. The monotonic ordering
property states that a data point p cannot be
dominated by any point that succeeds p in the Z-
order.

Due to the monotonic ordering property of ZB-
tree, each visited data point in a leaf node that is not
dominated by any skyline point in SL is guaranteed
to be a skyline point and is inserted into SL and
output to the users immediately. The clustering
property of ZB-tree enables many index sub tree
traversals to be efficiently pruned leading to its
superior performance over BBS (Bin Liu, 2011).

ii. Z-SKY:
Z-SKY (Lee, 2010)for skyline queries and

alternative, and skyline result are carrying based on
Z-order curves, Z-SKY is especially for large
datasets with high data dimensionality, and the
extensibility of a processing framework to support
skyline query variants. The powerful view of our Z-
SKY framework is illustrate in Figure. 1.4. It consists
of four main components, namely,

1. Adata source (SRC),

2. Aset of skyline possibilities (SL),

3. An algorithm library, and

4. Dominance tests.

| | dataset

.
Algorithm library 1‘1 /‘ updates
CZS’z‘urch)(ZDelete)(_ ZBand /\(k-ZSearch) { :-'

(" Zinsert)((ZUpdate)(ZRank)(ZSubspace’)

o -
 —
= = .
- Data source

Dominance test™~~ T =

conve ™ ¢ domi e test™ .

(" convenhional domirance iest . 1
(> yoer I il 14 Skyline (ZBtree)
\.JOM‘HWJI(‘L test _@Rd counnng l‘i]llL[ld.llC.‘- - ~
¢ Fedominance ("~ subipace 'y (Zbirec)

\ test —

fomi e test
N dominance test))

W N ~

_ Z-SKY

J

Fig. 1.4: The Z-SKY skyline query processing
framework.

Specifically, SRC is a set of source data points
indexed by a ZBtree (Ken, 2007). ZBtree indexes
data points based on their values on a Z-order curve.
Second, SL maintains skyline
possibilities(candidates) indexed by another ZBtree.
Third, the dominance tests provide different types of
dominance relationship tests, such as (traditional)
dominance tests, dominance and enumerate that
complete the number of dominating points for a data
point, k-dominance tests and subspace dominance
tests that support k-dominant skyline queries and
subspace skyline queries, respectively.

The figure 1.4 , the algorithm library maintains a
suite of algorithms, namely, (1) ZSearch, which
processes skyline queries, (2) Zinsert, ZDelete and
ZUpdate, which incrementally update skyline query
results, (3) ZBand,which evaluates skyband queries,
(4) ZRank, which returns skyline points that dominate
the most data points, (5) k-ZSearch, which answers k-
dominant skyline queries and (6) ZSubspace, which
performs skyline searches on specified subsets of
dimensions. Upon receiving a skyline query (or its
variant), a corresponding algorithm is then invoked to
access and examine data points from SRC with
corresponding dominance tests. The candidates are
kept in SL. After evaluations, skyline points are
delivered. Likewise, to maintain a skyline result in
presence of dataset updates, a skyline result update
algorithm is triggered that determines the change of a
result preserved in SL and accesses required data
points from SRC if needed. It is noteworthy that the
underlying operations and data structures follow a
coherent idea and concept developed based on Z-
order curves.

209 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

iii. ZINC:

ZINC (for Z-order indexing with Nested Code)
(Bin Liu Chee, 2010) that supports efficient skyline
computation for data with both Totally Ordered (TO)
as well as Partially Ordered (PO) attribute domains.
ZINC is basically a ZB-tree that uses a novel
encoding scheme to map PO domain values into
bitstrings. Once the PO domain values have been
mapped into bitstrings, the mapped bitstrings of all
the attributes (whether TO or PO domains) of the
records will be used to construct a ZB-tree index.
Thus, the index construction and search algorithms
for ZINC is equivalent to those of ZB-tree except that
ZINC uses a different method for dominance
comparisons between PO domain values. ZINC is
able to encode partial orders of varying complexity in
a brief manner while maintaining a good clustering
of the PO domain values.

Conclusion:

This paper made a brief survey on skyline
computing an overview of some algorithms and
techniques. Recently skyline algorithm receives an
attractive attention in data mining and big data field.
Skyline queries retrieve the non-dominated points
from a large database system based on the user
preference so it can be used in partial based
applications. However, all existing database
algorithms for skyline Computations have several
deficiencies, which severely limit their applicability.
BNL, SFS and D&C are not progressive. Bitmap is
applicable only for datasets with small attribute
domains and cannot efficiently handle updates. Index
cannot be used for skyline queries on a subset of the
dimensions. SFS, like all above algorithms, does not
support user-defined preferences. LESS should
consistently perform better than SFS. SalLSa
algorithm is the ability of computing the result
without having to apply dominance tests to all the
objects in the input relation.

REFERENCES

Angel Bency, C., S. Deepa Kanmani, 2014. ”A
SURVEY OF SKYLINE PROCESSING IN
VARIOUS ENVIRONMENT”, IJCSE, ISSN: 0976-
5166, 5(1).

Apeksha Aggarwal, Harsh Kumar Verma , 2014.
”Skyline Computation Algorithms - A Study”, Dr
B.R. Ambedkar NIT, Jalandhar, India, 2014,
IJARCSSE.

Bin Liu Chee, Yong Chan, 2010. “ZINC:
Efficient Indexing for Skyline Computation”P
roceedings of the VLDB Endowment, Volume 4
Issue 3.

Bin Liu, 2011. , “ZINC Efficient Indexing for
Skyline Computation”, Proceedings of the VLDB
Endowment, Vol. 4, No. 3 August 29th - September
3rd 2011.

Borzsonyi, S., D. Kossmann and K. Stocker,
2001. “The skyline operator”. Proceedings of ICDE,
pp: 421-430.

Dimitris Papadias, 2003. “An Optimal and
Progressive Algorithm for Skyline Queries”. ACM
SIGMOD'2003, June 9-12, San Diego, California,
USA.

George Trimponias, llaria Bartolini, Member,
2013. IEEE, Dimitris Papadias, and Yin Yang,
“Skyline Processing on Distributed Vertical
Decompositions”. IEEE Transactions On Knowledge
And Data Engineering, Vol. 25, No. 4.

Godfrey, P., R. Shipley and J. Gryz, 2007.
“Algorithms and Analyses for Maximal Vector
Computation,” Int’l J. Very Large Data Bases, 16(1):
5-28.

Godfrey, P., R. Shipley and J. Gryz, 2005.
Maximal vector computation in large data sets. In
VLDB.

Godfrey, Shipley, Gryz, 2006. “Algorithms and
Analyses for Maximal Vector Computation”. VLDB
Journal, pp:1-22.

llaria Bartolini, Paolo Ciaccia , Marco
Patella,”Sal.Sa: Computing the Skyline without
Scanning the Whole Sky”.

ILARIA BARTOLINI, PAOLO CIACCIA and
MARCO PATELLA, 2008. “Efficient Sort-Based
Skyline Evaluation”. ACM Transactions on Database
Systems, Vol. 33, No. 4, Article 31, Publication date:
November.

Jan Chomicki, Parke Godfrey, Jarek Gryz and
Dongming Liang, 2005. “Skyline with
PresortingTechnical Report, Computer Science, York
University, Toronto, ON, Canada, Oct.

Ken, C.K. Lee, 2007. “Approaching Skyline in
Z-order” VLDB, Sept 07.

Ken, C.K. Lee, Baihua Zheng, Li. Huajing,
Wang-Chien Lee, 2006. ”Approaching the Skyline in
Z Order”.

Kossmann, D., F. Ramsak, S. Rost, 2002.
“Shooting Stars in the Sky: an Online Algorithm for
Skyline Queries”. VLDB.

Kossmann, D., F. Ramsak, S. Rost, 2002.
Shooting Stars in the Sky: an Online Algorithm for
Skyline Queries. VLDB.

Lee, C.K. Ken Lee, Wang-chien, ZHENG, Li.
Baihua, Huajing; and Tian, Yuan, Z-SKY, 2010. An
Efficient Skyline Query Processing Framework
Based on Z-Order. (2010). VLDB Journal, 19(3):
333-362.

Lee, K., B. Zhang, H. Li, and W.C. Lee, 2007.
“Approaching the Skyline in Z Order,” Proc. 33rd
Int’l Conf. Very Large Data Bases (VLDB).

Mehdi Sharifzadeh, Cyrus Shahabi, 2010.
”VoRTree:Rtrees with Voronoi Diagrams for
Efficient Processing of Spatial Nearest Neighbor
Queries”, Proceedings of the VLDB Endowment,
3(2).

Ms. Kulkarnil, R.D. and Prof. Dr. B.F. Momin,

210 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

2012. “ Future Research Directions in Skyline
Computation”. International Journal of Computer
Engineering Science (IJCES), Volume 2 Issue .

Papadias, D., Y. Tao, G. Fu and B. Seeger,
2005. “Progressive Skyline Computation in Database
Systems,” ACM Trans. Database Systems, 30(1): 41-
82.

Su Min Jang and Choon Seo Park, 2010.
“Skyline Minimum Vector”. 12th International Asia-
Pacific Web Conference.

Tao, Y., X. Xiao and J. Pei, 2006. “SUBSKY:
Efficient Computation of Skylines in Subspaces,”
Proc. 22nd Int’l Conf. Data Eng. (ICDE).

Theodoridis, Y., E. Stefanakis, Sellis, 2000. “T.
Efficient Cost Models for Spatial Queries Using R-
trees”. TKDE, 12(1): 19-32.

Vlachou, C. Doulkeridis and Y. Kaotidis, 2008.
“Angle-Based Space Partitioning for Efficient
Parallel ~ Skyline Computation,” Proc. ACM
SIGMOD Int’l Conf. Management of Data.

Vlachou, C. Doulkeridis, Y. Kotidis and M.
Vazirgiannis, 2007. “SKYPEER: Efficient Subspace
Skyline Computation over Distributed Data,” Proc.
Int’l Conf. Data Eng. (ICDE).

Wang, S., Q.H. Vu, B.C. Ooi, A.K.H. Tung and
L. Xu, 2009. “Skyframe: A Framework for Skyline
Query Processing in Peer-to-Peer Systems,” Int’l J.
Conf. Very Large Data Bases, 18(1): 345-362.

Yunjun Gao, 2014. . “On efficient reverse
skyline query processing” ELSEVIER, Expert
Systems with Applications, 41: 3237-3249.

