
Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

ISSN:1991-8178

Australian Journal of Basic and Applied Sciences

Journal home page: www.ajbasweb.com

Corresponding Author: A. Sairam, Research Scholar, Department of Computer Science and Engineering, Manonmaniam

Sundaranar University, Tamilnadu.

E-mail: a.sairam@yahoo.co.in

A Survey of Skyline Computing Algorithms

1A. Sairam and 2Dr. C. Suresh Gnana Dhas

1Research Scholar, Department of Computer Science and Engineering, Manonmaniam Sundaranar University, Tamilnadu
2Professor & HOD, Department of Computer Science and Engineering, Vivekananda Engineering College for Women, Tamilnadu

A R T I C L E I N F O A B S T R A C T

Article history:

Received 28 January 2015

Accepted 25 February 2015

Available online 6 March 2015

Keywords:

 Skyline queries are receiving interesting attention to the large database and data mining

field and its main advantage is it is used for multi-criteria decision making and

identifying interesting tuples with overall low formulation. Skyline queries mean it

exposes a set of non-dominated points or better points from the given data points. This

survey gives an overview about the existing algorithms of skyline computing

technique.

© 2015 AENSI Publisher All rights reserved.

To Cite This Article: A. Sairam and Dr. C. Suresh Gnana Dhas, A Survey of Skyline Computing Algorithms. Aust. J. Basic & Appl. Sci.,

9(10): 203-210, 2015

INTRODUCTION

 The skyline operator have more reasonable

attention due to its multi-criteria decision making,

user preference queries and data mining approach in

most of the application. Given a hotel database d1,

and it has a set of objects q1,q2,…qn. (Börzsönyi,

2001) an object qi is said to be in skyline of d1, if

there is no other object qj in d1 such that qj is better

than qi in all dimensions. If there is exist such a qj,

then we say that qi is dominated by qj, or qj

dominates q i.

 Most commonly using example in the literature

is Holiday resort or Hotels for holiday destination,

assume in figure 1.1.we have a set of hotels with its

distance (x axis) and rate (y axis) from the beach.

The most interesting hotels b, j and k for which there

is no point that is better on both dimensions

(Papadias, 2005).For instance, Hotel a in Figure 1.1

(Papadias, 2005) is better than hotels b and e is

nearest to the beach and low-cost in price.

The big deal in the skyline queries is to finding

skylines over high dimensional databases. Most of

the existing skyline algorithms are work efficiently

with the small database with low dimension. In this

paper we try to expose the skyline algorithms for

high dimensional database. Major leading problems

such as Top-K queries, convex hull, nearest neighbor

search. For the convex hull contains the subspace of

skyline points that may be excellent only for linear

functions, and the Top-K (or ranked) queries recover

the best K objects that minimize a set the desire

function. Nearest neighbor queries indicates a query

point q and output the objects nearer to q, in

increasing order of their distance.

Fig. 1.1: Example dataset and skyline.

Analysis of skyline algorithms:

 In this section we discuss about the classification

of skyline algorithms and its advantages and

disadvantages.

1) Sort based skyline algorithms

a. Bitmap algorithm

b. Index Algorithm

c. Sort first skyline algorithm(SFS)

d. LESS

e. SaLSa

204 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

2) Divide and- conquer algorithms

3) Hierarchical Index- based algorithms

a. R-Tree

A. Nearest Neighbor

B. Block Nested Loop (BNL)

b. B-Tree

A. ZB-Tree

B. Z-Sky

C. Zinc

1) Sort Based Skyline Algorithms:

 Sort based algorithm (Dimitris Papadias, 2003)

efficiently reduce the number of possibility objects

and reduce the computing price. Which is used to

sort the dataset objects based on analysis situs with

comparable to decreasing and increasing marks of a

monotone function, the calculation based on the

skyline becomes forthright because objects below a

certain threshold cannot be a part of the skyline. The

key doctrine element affecting the performance of the

sorting based algorithm is the choice of the sorting

function and the threshold. However, this requires

high-cost sorting process to prune the non-skyline

object. Some more sort based algorithms are as

follows.

Table 2.1: The bitmap approach.

a. Bitmap algorithm:

 A Bitmap[12] approach encodes in bitmaps of

all the information needed to decide whether a point

is in the skyline. A data point q = (q1, q2,..., qn) and

where d is the number of dimensions, is mapped to a

m-bit vector, where m is the total number of distinct

values over all dimensions.

 Let ki be the total number of distinct values on

the i-th dimension (i.e., m=Σi=1~dki). In Figure 1.1,

for example, there are k1=k2=10 distinct values on

the x-, y-dimensions and m=20. Estimate that qi is the

ji-th smallest number on the i-th axis, then, it is

represented by ki bits, where the leftmost (ki − ji +1)

bits are 1, and the remaining ones 0.

 Table 2.1 shows the bitmaps for points in Figure

1.1. Since point a, has the smallest value (1) on the x-

axis, all bits of a1 are 1. Similarly, since a2 (=9) is

the 9-th smallest on the y-axis, the first 10−9+1=2

bits of its representation are 1, while the remaining

ones are 0.

 Consider that we want to decide whether a points

c with bitmap representation (1111111000,

1110000000), belongs to the skyline. The rightmost

bits equal to 1, are the 4th and the 8th, on dimensions

x and y, respectively. The algorithm creates two bit-

strings, cX = 1110000110000 and cY =

0011011111111,by juxtaposing the corresponding

bits (i.e., 4th and 8th) of every point.

 These bit-strings (Shown in bold) contain 13 bits

(one from each object, starting from a and ending

with n). The 1's in the result of cX &

cY=0010000110000, indicate the points that

dominate c, i.e., c, h and i.

 The main advantage of this approach is instantly

return the first few skyline points based on their

insertion order, and the major drawback is

Expensive, because each point is inspected. Space

consumption is high. This approach is not suitable for

dynamic datasets where insertions may alter the

rankings of attribute values.

b. Index algorithm:

 The “index” approach (Papadias, 2005)

coordinates a set of d-dimensional points into d lists.

A set of d-dimensional points into d lists such that a

point q = (q1, q2, …, qn) is assigned to the i-th list

(1≤i≤d), if and only if its coordinate pi on the i-th

axis is the minimum among all dimensions, or

formally, qi≤qj for all j≠i. Initially, the algorithm

loads the first batch of each list, and handles the one

with the minimum minC.

 A set of d-dimensional points into d lists such

that a point q = (q1, q2, …, qd) is assigned to the i-th

list (1≤i≤d), if and only if its coordinate qi on the i-th

axis is the minimum among all dimensions, or

formally, qi≤qj for all j≠i. Initially, the algorithm

loads the first batch of each list, and handles the one

with the minimum minC. In Table 2.2, the first

batches {a}, {k} have identical minC=1, in which

case the algorithm handles the batch from list 1.

 Processing a batch involves,

(i) Computing the skyline inside the batch,

(ii) Among the computed points, it adds the ones not

dominated by any of the already-found skyline points

into the skyline list.

Table 2.2: The index approach.

 Points in each list are sorted in ascending order

of their minimum coordinate (minC, for short) and

indexed by a B-tree.

205 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

 Since batch {a} contains a single point and no

skyline point is found so far, a is added to the skyline

list. The next batch {b} in list 1 has minC=2, thus,

the algorithm handles batch {k} from list 2. Since k is

not dominated by a, it is inserted in the skyline.

Similarly the next batch handled is {b} from list 1,

where b is dominated by point a (already in the

skyline).

 The algorithm proceeds with batch {i,m},

computes the skyline inside the batch that contains a

single point i (i.e., I dominates m), and adds i to the

skyline. At this step the algorithm does not need to

proceed further, because both coordinates of i are

smaller than or equal to the minC (i.e., 4, 3) of the

next batches (i.e., {c}, {h,n}) of lists 1 and 2.All the

remaining points (in both lists) are dominated by i

and the algorithm terminates with {a, i, k}.

 The merits of the index approach is quickly

return skyline points at the top of the lists, and the

demerits are with the bitmap approach, the order that

the skyline points are returned is fixed, not

supporting user-defined options and the lists figure

out for d dimensions cannot be used to fetch the

skyline on any subset of the dimensions.

c. Sort first algorithm:

 The SFS[1] variation of BNL (Börzsönyi, 2001)

lightens these problems by first sorting the entire

dataset according to a (monotone) preference

function.

 Possibility points are added into the list in

ascending order of their scores, because points with

lower scores are likely to dominate a large number of

points, thus rendering the pruning more effective.

 Based on figure 1.1 dataset points, SFS show the

dynamic behavior because the pre-sorting ensures

that a point p dominating another q' must be visited

before q', hence we can immediately output the

points inserted to the list as skyline points.

 First SFS has to scan the entire data file to return

a complete skyline, because even a skyline point may

have very large score and thus appear at the end of

the sorted list. Main merits are SFS can efficiently

reduce the number of possibility objects and thus

reduce the computing cost, and the key affecting

factor is the choice of the sorting function and the

threshold. It requires high-cost sorting process to

prune non-skyline objects.

d. LESS:

 LESS (Linear Elimination Sort for Skyline)

(Godfrey, 2007) is the combination of Sort First

Skyline(SFS) and Block Nested Loop(BNL)

(Börzsönyi,2001). Thus LESS sorts the records first,

then filters the records via a skyline-filter (SF)

window, as does SFS.

LESS makes two major changes:

1. It uses an elimination-filter (EF) window in pass

zero of the external sort routine to eliminate records

quickly, and

2. It combines the final pass of the external sort with

the first skyline-filter (SF) pass. The external sort

routine used to sort the records is integrated into

LESS.

 Let b be the number of buffer pool frames

allocated to LESS. Pass zero of the standard external

sort routine reads in b pages of the data, sorts the

records across those b pages (say, using quick sort),

and writes the b sorted pages out as a b-length sorted

run.

 All subsequent passes of external sort are merge

passes. During a merge pass, external sort does a

number of (b − 1)-way merges, consuming all the

runs created by the previous pass. For each merge,

(up to) b − 1 of the runs created by the previous pass

are read in one page at a time, and written out as a

single sorted run. LESS additionally eliminates

records during pass zero of its external-sort phase. It

does this by maintaining a small elimination-filter

window. Copies of the records with the best entropy

scores seen so far are kept in the EF window. The EF

window acts similarly to the elimination window used

by BNL. In effect, LESS has all benefits of SFS’s

with no disadvantages. LESS should normally

perform better than SFS. Some buffer-pool space is

allocated to the EF window in pass zero for LESS

which is not for SFS.

 Therefore, the initial runs produced by LESS’s

pass zero are smaller than SFS’s, this may sometimes

force that LESS will require an additional pass to

complete the sort. Of course LESS saves a pass since

it combines the last sort pass with the first skyline

pass. LESS also has advantages of BNL’s advantages

and effectively none of its disadvantages.

 BNL has the top of tracking when window

records can be promoted as known maximals. LESS

does not need this. Maximals are classified more

efficiently once the input is effectively sorted. Thus

LESS has the same advantages as does SFS in

comparison to BNL.

e. SaLSa:

 SaLSa (Sort and Limit Skyline algorithm) (Ilaria

Bartolini), is differs from other collective algorithms

in that it consistently limits the number of points on

which dominance tests need to be executed. If the

input relation r is sorted according to a suitably

chosen monotone function, then it is possible to

determine the skyline of r without applying the

skyline filter to all the points. In general, this might

highly reduce the number of tuples to be read and,

depending on the specific instance and sorting

function; it might reduce the number of dominance

tests as well.

 Since SaLSa shares with SFS the idea of

presorting the input relation, it also keeps all the SFS

strengths: simplified management of the window,

206 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

incremental delivery of results, and optimal number

of passes of the filter phase. We illustrate how SaLSa

works when a single pass is sufficient to complete the

evaluation. Extension to the case where skyline size

exceeds the available main memory is managed as in

SFS, and not reported here for brevity.

 SaLSa starts by initializing to r the set u of

unread tuples. It also makes use of a stop point,

pstop, which is used to earlier terminate reading

tuples. Step 2 sorts u according to decreasing values

of a monotone function F. This is actually done by

issuing the following standard, i.e., non-skyline,

Algorithm 1.1: SaLSa

 Each time a new point p is read from u, p is

compared against the current skyline S. If none of the

points in S dominates p (i.e., S __ p), p is inserted

into S. This might possibly trigger the update of the

stop point (step 5). At step 6 SaLSa checks if it has

gained sufficient evidence to conclude that no further

point in u can be part of the skyline, i.e., all points in

u are dominated by pstop (pstop _ u).If this is so, the

algorithm terminates.

2) Divide and- conquer algorithms:

 Divide and- conquer (Börzsönyi, 2001), Divide

the large dataset into several smaller partitions.

Continue till each smaller partition of the dataset fits

in the main memory figure1.2 (a). Compute partial

skylines in each partition. Compute global skylines

by merging them. Calculate the median mp (or some

approximate median) of the input for some dimension

dp. Divide the input into two partitions.

1. P1 contains all tuples whose value of attribute dp

is better than mp.

2. P2 contains all other tuples.

Fig. 1.2: a) Partition of the dataset b) Partial Skyline

for each partition.

 The data space is divided into 4 partitions s1, s2,

s3, s4 as show in the figure 1.2 (b), with partial

skylines {a,c,g}, {d}, {i}, {m,k}, respectively.

Compute the Skylines S1 of P1 and S2 of P2. This is

done by periodically applying the whole algorithm to

P1 and P2 i.e., P1 and P2 are again partitioned.

 The recursive partitioning stops if a partition

contains only one (or very few) tuples. In this case,

computing the Skyline is trivial. Compute the overall

skyline result by merging of S1 and S2.By

eliminating those tuples of S2 which are dominated

by tuple in S1.

 To getting the final skyline, we need to remove

the points that are dominated by some point in other

partitions. Points c, g are removed because they are

dominated by i. Finally, the algorithm terminates with

the remaining points {a,i,k}.the attractive feature of

D&C is very fast compare to other algorithm and this

also has some demerits they are very sensitive to

main memory size and the dataset characteristics.

3) Hierarchical Index- based algorithms:

 The Hierarchical index-based algorithm has two

classifications: one is most popular index structure,

as B-Tree and the other is R-Tree.

1) By the use of popular index structures, such as

B-tree and R-tree (Theodoridis, 2000) presents a

genuine way to totally minimize the size of a skyline

possibility set.

2) The dataset points that are nearer the base point

have higher chance of being the skyline. Thus, the

computation of the skyline can be implemented

through k nearest neighbor search (kNN) (Kossmann,

2002).

 The advantage of hierarchical index-based

approach is its forward looking behavior that can

quickly return the initial results without having to

scan the entire dataset. This method also has some

other built-in setbacks, by restrain their usefulness to

only some cases. This approach adopts sophisticated

techniques such as the smart partitions of B-tree

index, the clever use of R-tree and the intelligent use

of multicore architectures (Lee, 2007) to accelerate

the skyline computation by parallelizing the most

CPU-intensive parts, the dominance tests, as well as

the fundamental limitation of hierarchical index

based solutions.

a. R-Tree:

 R-trees (Mehdi Sharifzadeh, 2010) for indexing

multi-dimensional data marked a new generation in

developing innovative R-tree-based algorithms for

various forms of Nearest Neighbor (NN) queries.

These algorithms utilize the simple rectangular

grouping principle used by R-tree that represents

close data points with their Minimum Bounding

Rectangle (MBR). R-tree is a height-balanced tree

similar to a B-tree with index records in its leaf nodes

containing pointers to data objects Nodes correspond

to disk pages If the index is disk-resident, and the

structure is designed so that a spatial search requires

207 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

visiting only a small number of nodes The index is

completely dynamic; inserts and deletes can be

intermixed with searches and no periodic

reorganization is required.

i. Nearest Neighbor (NN):

 NN uses the results of nearest neighbor search to

partition the data universe recursively. Consider the

application of the algorithm to the dataset of Figure

1.1, which is indexed by an R-tree (Theodoridis,

2000). Find nearest neighbor point with minimum

distance (mindist) from the beginning of the axis

(point o) to create skyline.

 Prune all the points in the dominance region of

this point Divide the space by the nearest neighbor

point. Partitions are inserted into a to-do list.

Compute recursively until empty space. Consider the

application of the algorithm to the dataset of Figure

1.1, which is indexed by an R-tree.for more instance,

assumes that a spatial index structure on the data

points is available for use.

 Identifies skyline points by repeated application

of a nearest neighbor search technique on the data

points, using a suitably defined L1 distance norm. The

nearest neighbor in the data-point is as it is closest to

the origin when an L1 distance measure is assumed as

like in the figure 1.3.

 Divides the space into 2
d
 non-disjoint region,

which now must now be recursively searched for

more skyline points.

 However, region 4 and 2 need not be searched.

The rest of the2
d
-2

regions need to be searched

 No closer point than i in 2 (by virtue that i is the

nearest neighbor to the origin). Any data-point in the

space 2 is dominated by i.

Fig. 1.3: NN algorithm Skyline.

 Recursively apply the search on region-1. The

nearest neighbor in region- 1would be a, explode

region to form additional regions .region- 4 is added

to the pruned region and need not be searched the

number of unexplored regions grow rapidly Ο

(dataset). The non-disjoint condition is relaxed for

high-dimensional datasets.

 The partitions resulting after the discovery of a

skyline point are inserted in a to-do list. While the to-

do list is not empty, NN removes one of the partitions

from the list and recursively repeats the same

process. The merits are fast running time to finding

the first result and Progressiveness. And the demerits

are Redundant I/O computation, Gets worse as

dimensionality increases Explosive to-do list size

ii. Block Nested Loop (BNL):

 Block Nested Loop (BNL (Godfrey, 2007) a

honorable method to calculate the skyline is to

compare each point q with every other point; if q is

not dominated, then it is a part of the skyline. BNL

builds on this concept by scanning the data file and

keeping a list of candidate skyline points in main

memory. The first data point is inserted into the list.

For each subsequent point q, there are three cases:

(i) If p is dominated by any point in the list, it is

discarded as it is not part of the skyline.

(ii) If p dominates any point in the list, it is inserted

into the list, and all points in the list dominated by p

are dropped.

(iii) If p is neither dominated, nor dominates, any

point in the list, it is inserted into the list as it may be

part of the Skyline.

 The list is self-organizing because every point

found dominating other points is moved to the top.

This reduces the number of comparisons as points

that dominate multiple other points are likely to be

checked first. A problem of BNL (Börzsönyi, 2001)

is that the list may become larger than the main

memory. When this happens, all points falling in

third case (cases (i) and (ii) do not increase the list

size), are added to a temporary file.

 This fact necessitates multiple passes of BNL. In

particular, after the algorithm finishes scanning the

data file, only points that were inserted in the list

before the creation of the temporary file are

guaranteed to be in the skyline and are output. The

remaining points must be compared against the ones

in the temporary file. Thus, BNL has to be executed

again, this time using the temporary (instead of the

data) file as input. The advantage of BNL is its wide

applicability, since it can be used for any

dimensionality without indexing or sorting the data

file. Its main problems are the reliance on main

memory and its inadequacy for on-line processing

because it has to read the entire data file before it

returns the first skyline point.

a. B-Tree

 The Calculation of the skyline can also be

facilitated by using Hierarchical index structures. In

(Börzsönyi, 2001), a method based on B-tree was

described. Assuming that each record has d

dimensions and there is an index for every

dimension, the skyline can be calculated as follows.

 Scan the entire indexes simultaneously to and

first match, i.e., the first record to be seen by all the

indexes during the scan. (Table 1.1)

208 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

 The first match is absolute part of the skyline

and can be returned immediately, providing a fast

initial response.

 Scan the rest of the index entries of the first

dimension's index. If the record has not been seen

before (i.e., the index entries of this record in the

other indexes have not been examined prior to the

first match), it is definitely not in the skyline and can

thus be eliminated. If any of the other indexes contain

an index entry to this record prior to the first match,

then the record may or may not be in the skyline. To

determine whether it is in the skyline, an existing

skyline computation algorithm can be applied.

Table 1.1: B-Tree scanning the data list.

 A critical factor that will affect the performance

of this algorithm is how fast the first match can be

found. If a match is found late (which is likely to be

the case for large number of dimensions), it will

result in a high initial response time. Nevertheless,

we can expect this algorithm to perform well in

general, when the skyline is small and the first match

can be found quickly.

i. ZB-Tree:

 ZB-tree method (Lee, 2007), This method is

designed for data where all the attributes have TO

domains. It first maps each multidimensional data

point to a one-dimensional Z-address according to Z-

order curve by interleaving the bit string

representations of the attribute values of that point.

 For instance, given a 2D data point (0,5), its

bitstring representation is (000,101) and its Z-address

is (010001). Figure 1.4(a) depicts an example of Z-

order curve on the set of 2D data points shown in

Figure. 1.1. By ordering data points in non-

descending order of their Z-addresses, ZB-tree has

two very useful properties. The monotonic ordering

property states that a data point p cannot be

dominated by any point that succeeds p in the Z-

order.

 Due to the monotonic ordering property of ZB-

tree, each visited data point in a leaf node that is not

dominated by any skyline point in SL is guaranteed

to be a skyline point and is inserted into SL and

output to the users immediately. The clustering

property of ZB-tree enables many index sub tree

traversals to be efficiently pruned leading to its

superior performance over BBS (Bin Liu, 2011).

ii. Z-SKY:

 Z-SKY (Lee, 2010)for skyline queries and

alternative, and skyline result are carrying based on

Z-order curves, Z-SKY is especially for large

datasets with high data dimensionality, and the

extensibility of a processing framework to support

skyline query variants. The powerful view of our Z-

SKY framework is illustrate in Figure. 1.4. It consists

of four main components, namely,

1. A data source (SRC),

2. A set of skyline possibilities (SL),

3. An algorithm library, and

4. Dominance tests.

Fig. 1.4: The Z-SKY skyline query processing

framework.

 Specifically, SRC is a set of source data points

indexed by a ZBtree (Ken, 2007). ZBtree indexes

data points based on their values on a Z-order curve.

Second, SL maintains skyline

possibilities(candidates) indexed by another ZBtree.

Third, the dominance tests provide different types of

dominance relationship tests, such as (traditional)

dominance tests, dominance and enumerate that

complete the number of dominating points for a data

point, k-dominance tests and subspace dominance

tests that support k-dominant skyline queries and

subspace skyline queries, respectively.

 The figure 1.4 , the algorithm library maintains a

suite of algorithms, namely, (1) ZSearch, which

processes skyline queries, (2) ZInsert, ZDelete and

ZUpdate, which incrementally update skyline query

results, (3) ZBand,which evaluates skyband queries,

(4) ZRank, which returns skyline points that dominate

the most data points, (5) k-ZSearch, which answers k-

dominant skyline queries and (6) ZSubspace, which

performs skyline searches on specified subsets of

dimensions. Upon receiving a skyline query (or its

variant), a corresponding algorithm is then invoked to

access and examine data points from SRC with

corresponding dominance tests. The candidates are

kept in SL. After evaluations, skyline points are

delivered. Likewise, to maintain a skyline result in

presence of dataset updates, a skyline result update

algorithm is triggered that determines the change of a

result preserved in SL and accesses required data

points from SRC if needed. It is noteworthy that the

underlying operations and data structures follow a

coherent idea and concept developed based on Z-

order curves.

209 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

iii. ZINC:

 ZINC (for Z-order indexing with Nested Code)

(Bin Liu Chee, 2010) that supports efficient skyline

computation for data with both Totally Ordered (TO)

as well as Partially Ordered (PO) attribute domains.

ZINC is basically a ZB-tree that uses a novel

encoding scheme to map PO domain values into

bitstrings. Once the PO domain values have been

mapped into bitstrings, the mapped bitstrings of all

the attributes (whether TO or PO domains) of the

records will be used to construct a ZB-tree index.

Thus, the index construction and search algorithms

for ZINC is equivalent to those of ZB-tree except that

ZINC uses a different method for dominance

comparisons between PO domain values. ZINC is

able to encode partial orders of varying complexity in

a brief manner while maintaining a good clustering

of the PO domain values.

Conclusion:

 This paper made a brief survey on skyline

computing an overview of some algorithms and

techniques. Recently skyline algorithm receives an

attractive attention in data mining and big data field.

Skyline queries retrieve the non-dominated points

from a large database system based on the user

preference so it can be used in partial based

applications. However, all existing database

algorithms for skyline Computations have several

deficiencies, which severely limit their applicability.

BNL, SFS and D&C are not progressive. Bitmap is

applicable only for datasets with small attribute

domains and cannot efficiently handle updates. Index

cannot be used for skyline queries on a subset of the

dimensions. SFS, like all above algorithms, does not

support user-defined preferences. LESS should

consistently perform better than SFS. SaLSa

algorithm is the ability of computing the result

without having to apply dominance tests to all the

objects in the input relation.

REFERENCES

Angel Bency, C., S. Deepa Kanmani, 2014. ”A

SURVEY OF SKYLINE PROCESSING IN

VARIOUS ENVIRONMENT”, IJCSE, ISSN: 0976-

5166, 5(1).

Apeksha Aggarwal, Harsh Kumar Verma , 2014.

”Skyline Computation Algorithms - A Study”, Dr

B.R. Ambedkar NIT, Jalandhar, India, 2014,

IJARCSSE.

Bin Liu Chee, Yong Chan, 2010. ”ZINC:

Efficient Indexing for Skyline Computation”P

roceedings of the VLDB Endowment, Volume 4

Issue 3.

Bin Liu, 2011. , “ZINC Efficient Indexing for

Skyline Computation”, Proceedings of the VLDB

Endowment, Vol. 4, No. 3 August 29th - September

3rd 2011.

Börzsönyi, S., D. Kossmann and K. Stocker,

2001. “The skyline operator”. Proceedings of ICDE,

pp: 421-430.

Dimitris Papadias, 2003. “An Optimal and

Progressive Algorithm for Skyline Queries”. ACM

SIGMOD'2003, June 9-12, San Diego, California,

USA.

George Trimponias, Ilaria Bartolini, Member,

2013. IEEE, Dimitris Papadias, and Yin Yang,

“Skyline Processing on Distributed Vertical

Decompositions”. IEEE Transactions On Knowledge

And Data Engineering, Vol. 25, No. 4.

Godfrey, P., R. Shipley and J. Gryz, 2007.

“Algorithms and Analyses for Maximal Vector

Computation,” Int’l J. Very Large Data Bases, 16(1):

5-28.

Godfrey, P., R. Shipley and J. Gryz, 2005.

Maximal vector computation in large data sets. In

VLDB.

Godfrey, Shipley, Gryz, 2006. “Algorithms and

Analyses for Maximal Vector Computation”. VLDB

Journal, pp:1-22.

Ilaria Bartolini, Paolo Ciaccia , Marco

Patella,”SaLSa: Computing the Skyline without

Scanning the Whole Sky”.

ILARIA BARTOLINI, PAOLO CIACCIA and

MARCO PATELLA, 2008. “Efficient Sort-Based

Skyline Evaluation”. ACM Transactions on Database

Systems, Vol. 33, No. 4, Article 31, Publication date:

November.

Jan Chomicki, Parke Godfrey, Jarek Gryz and

Dongming Liang, 2005. “Skyline with

PresortingTechnical Report, Computer Science, York

University, Toronto, ON, Canada, Oct.

Ken, C.K. Lee, 2007. “Approaching Skyline in

Z-order” VLDB, Sept 07.

Ken, C.K. Lee, Baihua Zheng, Li. Huajing,

Wang-Chien Lee, 2006. ”Approaching the Skyline in

Z Order”.

Kossmann, D., F. Ramsak, S. Rost, 2002.

“Shooting Stars in the Sky: an Online Algorithm for

Skyline Queries”. VLDB.

Kossmann, D., F. Ramsak, S. Rost, 2002.

Shooting Stars in the Sky: an Online Algorithm for

Skyline Queries. VLDB.

Lee, C.K. Ken Lee, Wang-chien, ZHENG, Li.

Baihua, Huajing; and Tian, Yuan, Z-SKY, 2010. An

Efficient Skyline Query Processing Framework

Based on Z-Order. (2010). VLDB Journal, 19(3):

333-362.

Lee, K., B. Zhang, H. Li, and W.C. Lee, 2007.

“Approaching the Skyline in Z Order,” Proc. 33rd

Int’l Conf. Very Large Data Bases (VLDB).

Mehdi Sharifzadeh, Cyrus Shahabi, 2010.

”VoRTree:Rtrees with Voronoi Diagrams for

Efficient Processing of Spatial Nearest Neighbor

Queries”, Proceedings of the VLDB Endowment,

3(1).

Ms. Kulkarni1, R.D. and Prof. Dr. B.F. Momin,

210 A. Sairam and Dr. C. Suresh Gnana Dhas, 2015

Australian Journal of Basic and Applied Sciences, 9(10) Special 2015, Pages: 203-110

2012. “ Future Research Directions in Skyline

Computation”. International Journal of Computer

Engineering Science (IJCES), Volume 2 Issue .

Papadias, D., Y. Tao, G. Fu and B. Seeger,

2005. “Progressive Skyline Computation in Database

Systems,” ACM Trans. Database Systems, 30(1): 41-

82.

Su Min Jang and Choon Seo Park, 2010.

“Skyline Minimum Vector”. 12th International Asia-

Pacific Web Conference.

Tao, Y., X. Xiao and J. Pei, 2006. “SUBSKY:

Efficient Computation of Skylines in Subspaces,”

Proc. 22nd Int’l Conf. Data Eng. (ICDE).

Theodoridis, Y., E. Stefanakis, Sellis, 2000. “T.

Efficient Cost Models for Spatial Queries Using R-

trees”. TKDE, 12(1): 19-32.

Vlachou, C. Doulkeridis and Y. Kotidis, 2008.

“Angle-Based Space Partitioning for Efficient

Parallel Skyline Computation,” Proc. ACM

SIGMOD Int’l Conf. Management of Data.

Vlachou, C. Doulkeridis, Y. Kotidis and M.

Vazirgiannis, 2007. “SKYPEER: Efficient Subspace

Skyline Computation over Distributed Data,” Proc.

Int’l Conf. Data Eng. (ICDE).

Wang, S., Q.H. Vu, B.C. Ooi, A.K.H. Tung and

L. Xu, 2009. “Skyframe: A Framework for Skyline

Query Processing in Peer-to-Peer Systems,” Int’l J.

Conf. Very Large Data Bases, 18(1): 345-362.

Yunjun Gao, 2014. . “On efficient reverse

skyline query processing” ELSEVIER, Expert

Systems with Applications, 41: 3237–3249.

