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 Skyline queries are receiving interesting attention to the large database and data mining 

field and its main advantage is it is used for multi-criteria decision making and 

identifying interesting tuples with overall low formulation. Skyline queries mean it 

exposes a set of non-dominated points or better points from the given data points. This 

survey gives an overview about the existing algorithms of skyline computing 

technique. 
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INTRODUCTION 

 

 The skyline operator have more reasonable 

attention due to its multi-criteria decision making, 

user preference queries and data mining approach in 

most of the application. Given a hotel database d1, 

and  it has a set of objects q1,q2,…qn. (Börzsönyi, 

2001) an object qi is said to be in skyline of d1, if 

there is no other object qj in d1 such that qj is better 

than qi in all dimensions. If there is exist such a qj, 

then we say that qi is dominated by qj, or qj 

dominates q i. 

 Most commonly using example in the literature 

is Holiday resort or Hotels for holiday destination, 

assume in figure 1.1.we have a set of hotels with its 

distance (x axis) and rate (y axis) from the beach. 

The most interesting hotels b, j and k for which there 

is no point that is better on both dimensions 

(Papadias, 2005).For instance, Hotel a in Figure 1.1 

(Papadias, 2005) is better than hotels b and e is 

nearest to the beach and low-cost in price. 

The big deal in the skyline queries is to finding 

skylines over high dimensional databases. Most of 

the existing skyline algorithms are work efficiently 

with the small database with low dimension. In this 

paper we try to expose the skyline algorithms for 

high dimensional database. Major leading problems 

such as Top-K queries, convex hull, nearest neighbor 

search. For the convex hull contains the subspace of 

skyline points that may be excellent only for linear 

functions, and the Top-K (or ranked) queries recover 

the best K objects that minimize a set the desire 

function. Nearest neighbor queries indicates a query 

point q and output the objects nearer to q, in 

increasing order of their distance. 

 

 
 

Fig. 1.1: Example dataset and skyline. 

 

Analysis of skyline algorithms: 

 In this section we discuss about the classification 

of skyline algorithms and its advantages and 

disadvantages.  

1) Sort based skyline algorithms 

a. Bitmap algorithm 

b. Index Algorithm 

c. Sort first skyline algorithm(SFS) 

d. LESS 

e. SaLSa 
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2) Divide and- conquer algorithms 

3) Hierarchical Index- based algorithms 

a. R-Tree 

A. Nearest Neighbor  

B. Block Nested Loop (BNL)  

b. B-Tree 

A. ZB-Tree 

B. Z-Sky 

C. Zinc 

 

1) Sort Based Skyline Algorithms: 

 Sort based algorithm (Dimitris Papadias, 2003) 

efficiently reduce the number of possibility objects 

and reduce the computing price. Which is used to 

sort the dataset objects based on analysis situs with 

comparable to decreasing and increasing marks of a 

monotone function, the calculation based on the 

skyline becomes forthright because objects below a 

certain threshold cannot be a part of the skyline. The 

key doctrine element affecting the performance of the 

sorting based algorithm is the choice of the sorting 

function and the threshold. However, this requires 

high-cost sorting process to prune the non-skyline 

object. Some more sort based algorithms are as 

follows. 

 
Table 2.1: The bitmap approach. 

 
 

a. Bitmap algorithm: 

 A Bitmap[12] approach encodes in bitmaps of 

all the information needed to decide whether a point 

is in the skyline. A data point q = (q1, q2,..., qn) and 

where d is the number of dimensions, is mapped to a 

m-bit vector, where m is the total number of distinct 

values over all dimensions.  

 Let ki be the total number of distinct values on 

the i-th dimension (i.e., m=Σi=1~dki). In Figure 1.1, 

for example, there are k1=k2=10 distinct values on 

the x-, y-dimensions and m=20. Estimate that qi is the 

ji-th smallest number on the i-th axis, then, it is 

represented by ki bits, where the leftmost (ki − ji +1) 

bits are 1, and the remaining ones 0. 

 Table 2.1 shows the bitmaps for points in Figure 

1.1. Since point a, has the smallest value (1) on the x-

axis, all bits of a1 are 1. Similarly, since a2 (=9) is 

the 9-th smallest on the y-axis, the first 10−9+1=2 

bits of its representation are 1, while the remaining 

ones are 0. 

 Consider that we want to decide whether a points 

c with bitmap representation (1111111000, 

1110000000), belongs to the skyline. The rightmost 

bits equal to 1, are the 4th and the 8th, on dimensions 

x and y, respectively. The algorithm creates two bit-

strings, cX = 1110000110000 and cY = 

0011011111111,by juxtaposing the corresponding 

bits  (i.e., 4th and 8th) of every point. 

 These bit-strings (Shown in bold) contain 13 bits 

(one from each object, starting from a and ending 

with n). The 1's in the result of cX & 

cY=0010000110000, indicate the points that 

dominate c, i.e., c, h and i. 

 The main advantage of this approach is instantly 

return the first few skyline points based on their 

insertion order, and the major drawback is 

Expensive, because each point is inspected. Space 

consumption is high. This approach is not suitable for 

dynamic datasets where insertions may alter the 

rankings of attribute values. 

 

b. Index algorithm: 

 The “index” approach (Papadias, 2005) 

coordinates a set of d-dimensional points into d lists. 

A set of d-dimensional points into d lists such that a 

point q = (q1, q2, …, qn) is assigned to the i-th list 

(1≤i≤d), if and only if its coordinate pi on the i-th 

axis is the minimum among all dimensions, or 

formally, qi≤qj for all j≠i. Initially, the algorithm 

loads the first batch of each list, and handles the one 

with the minimum minC. 

 A set of d-dimensional points into d lists such 

that a point q = (q1, q2, …, qd) is assigned to the i-th 

list (1≤i≤d), if and only if its coordinate qi on the i-th 

axis is the minimum among all dimensions, or 

formally, qi≤qj for all j≠i. Initially, the algorithm 

loads the first batch of each list, and handles the one 

with the minimum minC. In Table 2.2, the first 

batches {a}, {k} have identical minC=1, in which 

case the algorithm handles the batch from list 1. 

 Processing a batch involves, 

(i) Computing the skyline inside the batch,  

(ii) Among the computed points, it adds the ones not 

dominated by any of the already-found skyline points 

into the skyline list.  

 
Table 2.2: The index approach. 

 
 

 Points in each list are sorted in ascending order 

of their minimum coordinate (minC, for short) and 

indexed by a B-tree. 
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 Since batch {a} contains a single point and no 

skyline point is found so far, a is added to the skyline 

list. The next batch {b} in list 1 has minC=2, thus, 

the algorithm handles batch {k} from list 2. Since k is 

not dominated by a, it is inserted in the skyline.  

Similarly the next batch handled is {b} from list 1, 

where b is dominated by point a (already in the 

skyline).  

 The algorithm proceeds with batch {i,m}, 

computes the skyline inside the batch that contains a 

single point i (i.e., I dominates m), and adds i to the 

skyline. At this step the algorithm does not need to 

proceed further, because both coordinates of i are 

smaller than or equal to the minC (i.e., 4, 3) of the 

next batches (i.e., {c}, {h,n}) of lists 1 and 2.All the 

remaining points (in both lists) are dominated by i 

and the algorithm terminates with {a, i, k}. 

 The merits of the index approach is quickly 

return skyline points at the top of the lists, and the 

demerits are with the bitmap approach, the order that 

the skyline points are returned is fixed, not 

supporting user-defined options and the  lists figure 

out  for d dimensions cannot be used to fetch the 

skyline on any subset of the dimensions. 

 

c. Sort first algorithm: 

 The SFS[1] variation of BNL (Börzsönyi, 2001) 

lightens these problems by first sorting the entire 

dataset according to a (monotone) preference 

function.  

 Possibility points are added into the list in 

ascending order of their scores, because points with 

lower scores are likely to dominate a large number of 

points, thus rendering the pruning more effective.  

 Based on figure 1.1 dataset points, SFS show the 

dynamic behavior because the pre-sorting ensures 

that a point p dominating another q' must be visited 

before q', hence we can immediately output the 

points inserted to the list as skyline points. 

 First SFS has to scan the entire data file to return 

a complete skyline, because even a skyline point may 

have very large score and thus appear at the end of 

the sorted list. Main merits are SFS can efficiently 

reduce the number of possibility objects and thus 

reduce the computing cost, and the key affecting 

factor is the choice of the sorting function and the 

threshold. It requires high-cost sorting process to 

prune non-skyline objects. 

 

d. LESS: 

 LESS (Linear Elimination Sort for Skyline) 

(Godfrey, 2007) is the  combination  of Sort First 

Skyline(SFS) and Block Nested Loop(BNL) 

(Börzsönyi,2001). Thus LESS sorts the records first, 

then filters the records via a skyline-filter (SF) 

window, as does SFS. 

 

LESS makes two major changes:  

1. It uses an elimination-filter (EF) window in pass 

zero of the external sort routine to eliminate records 

quickly, and  

2. It combines the final pass of the external sort with 

the first skyline-filter (SF) pass. The external sort 

routine used to sort the records is integrated into 

LESS.  

 Let b be the number of buffer pool frames 

allocated to LESS. Pass zero of the standard external 

sort routine reads in b pages of the data, sorts the 

records across those b pages (say, using quick sort), 

and writes the b sorted pages out as a b-length sorted 

run.  

 All subsequent passes of external sort are merge 

passes. During a merge pass, external sort does a 

number of (b − 1)-way merges, consuming all the 

runs created by the previous pass. For each merge, 

(up to) b − 1 of the runs created by the previous pass 

are read in one page at a time, and written out as a 

single sorted run. LESS additionally eliminates 

records during pass zero of its external-sort phase. It 

does this by maintaining a small elimination-filter 

window. Copies of the records with the best entropy 

scores seen so far are kept in the EF window. The EF 

window acts similarly to the elimination window used 

by BNL. In effect, LESS has all benefits of SFS’s 

with no disadvantages. LESS should normally 

perform better than SFS. Some buffer-pool space is 

allocated to the EF window in pass zero for LESS 

which is not for SFS.  

 Therefore, the initial runs produced by LESS’s 

pass zero are smaller than SFS’s, this may sometimes 

force that LESS will require an additional pass to 

complete the sort. Of course LESS saves a pass since 

it combines the last sort pass with the first skyline 

pass. LESS also has advantages of BNL’s advantages 

and effectively none of its disadvantages.  

 BNL has the top of tracking when window 

records can be promoted as known maximals. LESS 

does not need this. Maximals are classified more 

efficiently once the input is effectively sorted. Thus 

LESS has the same advantages as does SFS in 

comparison to BNL. 

 

e. SaLSa: 

 SaLSa (Sort and Limit Skyline algorithm) (Ilaria 

Bartolini), is differs from other collective algorithms 

in that it consistently limits the number of points on 

which dominance tests need to be executed. If the 

input relation r is sorted according to a suitably 

chosen monotone function, then it is possible to 

determine the skyline of r without applying the 

skyline filter to all the points. In general, this might 

highly reduce the number of tuples to be read and, 

depending on the specific instance and sorting 

function; it might reduce the number of dominance 

tests as well.  

 Since SaLSa shares with SFS the idea of 

presorting the input relation, it also keeps all the SFS 

strengths: simplified management of the window, 
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incremental delivery of results, and optimal number 

of passes of the filter phase. We illustrate how SaLSa 

works when a single pass is sufficient to complete the 

evaluation. Extension to the case where skyline size 

exceeds the available main memory is managed as in 

SFS, and not reported here for brevity. 

 SaLSa starts by initializing to r the set u of 

unread tuples. It also makes use of a stop point, 

pstop, which is used to earlier terminate reading 

tuples. Step 2 sorts u according to decreasing values 

of a monotone function F. This is actually done by 

issuing the following standard, i.e., non-skyline, 

 

 
Algorithm 1.1: SaLSa 

 

 Each time a new point p is read from u, p is 

compared against the current skyline S. If none of the 

points in S dominates p (i.e., S __ p), p is inserted 

into S. This might possibly trigger the update of the 

stop point (step 5). At step 6 SaLSa checks if it has 

gained sufficient evidence to conclude that no further 

point in u can be part of the skyline, i.e., all points in 

u are dominated by pstop (pstop _ u).If this is so, the 

algorithm terminates. 

 

2) Divide and- conquer algorithms: 

 Divide and- conquer (Börzsönyi, 2001), Divide 

the large dataset into several smaller partitions. 

Continue till each smaller partition of the dataset fits 

in the main memory figure1.2 (a).  Compute partial 

skylines in each partition. Compute global skylines 

by merging them. Calculate the median mp (or some 

approximate median) of the input for some dimension 

dp. Divide the input into two partitions.  

1. P1 contains all tuples whose value of attribute dp 

is better than mp.  

2. P2 contains all other tuples. 

 

 
 

Fig. 1.2: a) Partition of the dataset b) Partial Skyline  

for each partition. 

 

 The data space is divided into 4 partitions s1, s2, 

s3, s4 as show in the figure 1.2 (b), with partial 

skylines {a,c,g}, {d}, {i}, {m,k}, respectively. 

Compute the Skylines S1 of P1 and S2 of P2. This is 

done by periodically applying the whole algorithm to 

P1 and P2 i.e., P1 and P2 are again partitioned. 

 The recursive partitioning stops if a partition 

contains only one (or very few) tuples. In this case, 

computing the Skyline is trivial. Compute the overall 

skyline result by merging of S1 and S2.By 

eliminating those tuples of S2 which are dominated 

by tuple in S1. 

 To getting the final skyline, we need to remove 

the points that are dominated by some point in other 

partitions. Points c, g are removed because they are 

dominated by i. Finally, the algorithm terminates with 

the remaining points {a,i,k}.the attractive feature of 

D&C is very fast compare to other algorithm and this 

also has some demerits they are very sensitive to 

main memory size and the dataset characteristics. 

 

3) Hierarchical Index- based algorithms: 

 The Hierarchical index-based algorithm has two 

classifications: one is most popular index structure, 

as B-Tree and the other is R-Tree.  

1) By the use of popular index structures, such as 

B-tree and R-tree (Theodoridis, 2000) presents a 

genuine way to totally minimize the size of a skyline 

possibility set.  

2) The dataset points that are nearer the base point 

have higher chance of being the skyline. Thus, the 

computation of the skyline can be implemented 

through k nearest neighbor search (kNN) (Kossmann, 

2002). 

 The advantage of hierarchical index-based 

approach is its forward looking behavior that can 

quickly return the initial results without having to 

scan the entire dataset. This method also has some 

other built-in setbacks, by restrain their usefulness to 

only some cases. This approach adopts sophisticated 

techniques such as the smart partitions of B-tree 

index, the clever use of R-tree and the intelligent use 

of multicore architectures (Lee, 2007) to accelerate 

the skyline computation by parallelizing the most 

CPU-intensive parts, the dominance tests, as well as 

the fundamental limitation of hierarchical index 

based solutions.  

 

a. R-Tree: 

 R-trees (Mehdi Sharifzadeh, 2010) for indexing 

multi-dimensional data marked a new generation in 

developing innovative  R-tree-based algorithms for 

various forms of Nearest Neighbor (NN) queries. 

These algorithms utilize the simple rectangular 

grouping principle used by R-tree that represents 

close data points with their Minimum Bounding 

Rectangle (MBR).  R-tree is a height-balanced tree 

similar to a B-tree with index records in its leaf nodes 

containing pointers to data objects Nodes correspond 

to disk pages If the index is disk-resident, and the 

structure is designed so that a spatial search requires 
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visiting only a small number of nodes The index is 

completely dynamic; inserts and deletes can be 

intermixed with searches and no periodic 

reorganization is required.  

 

i. Nearest Neighbor (NN): 

 NN uses the results of nearest neighbor search to 

partition the data universe recursively. Consider the 

application of the algorithm to the dataset of Figure 

1.1, which is indexed by an R-tree (Theodoridis, 

2000). Find nearest neighbor point with minimum 

distance (mindist) from the beginning of the axis 

(point o) to create skyline. 

 Prune all the points in the dominance region of 

this point Divide the space by the nearest neighbor 

point. Partitions are inserted into a to-do list. 

Compute recursively until empty space. Consider the 

application of the algorithm to the dataset of Figure 

1.1, which is indexed by an R-tree.for more instance, 

assumes that a spatial index structure on the data 

points is available for use.  

 Identifies skyline points by repeated application 

of a nearest neighbor search technique on the data 

points, using a suitably defined L1 distance norm. The 

nearest neighbor in the data-point is as it is closest to 

the origin when an L1 distance measure is assumed as 

like in the figure 1.3. 

 Divides the space into 2
d
 non-disjoint region, 

which now must now be recursively searched for 

more skyline points.  

 However, region 4 and 2 need not be searched. 

The rest of the2
d
-2

 
regions need to be searched  

 No closer point than i in 2 (by virtue that i  is the 

nearest neighbor to the origin). Any data-point in the 

space 2 is dominated by i. 

 

 
 

Fig. 1.3: NN algorithm Skyline. 

 

 Recursively apply the search on region-1. The 

nearest neighbor in region- 1would be a, explode 

region to form additional regions .region- 4 is added 

to the pruned region and need not be searched the 

number of unexplored regions grow rapidly Ο 

(dataset). The non-disjoint condition is relaxed for 

high-dimensional datasets. 

 The partitions resulting after the discovery of a 

skyline point are inserted in a to-do list. While the to-

do list is not empty, NN removes one of the partitions 

from the list and recursively repeats the same 

process. The merits are fast running time to finding 

the first result and Progressiveness. And the demerits 

are Redundant I/O computation, Gets worse as 

dimensionality increases Explosive to-do list size  

 

ii. Block Nested Loop (BNL): 

 Block Nested Loop (BNL (Godfrey, 2007) a 

honorable  method to calculate the skyline is to 

compare each point q with every other point; if q is 

not dominated, then it is a part of the skyline. BNL 

builds on this concept by scanning the data file and 

keeping a list of candidate skyline points in main 

memory. The first data point is inserted into the list. 

For each subsequent point q, there are three cases: 

(i) If p is dominated by any point in the list, it is 

discarded as it is not part of the skyline. 

(ii) If p dominates any point in the list, it is inserted 

into the list, and all points in the list dominated by p 

are dropped. 

(iii) If p is neither dominated, nor dominates, any 

point in the list, it is inserted into the list as it may be 

part of the Skyline. 

 The list is self-organizing because every point 

found dominating other points is moved to the top. 

This reduces the number of comparisons as points 

that dominate multiple other points are likely to be 

checked first. A problem of BNL (Börzsönyi, 2001) 

is that the list may become larger than the main 

memory. When this happens, all points falling in 

third case (cases (i) and (ii) do not increase the list 

size), are added to a temporary file.  

 This fact necessitates multiple passes of BNL. In 

particular, after the algorithm finishes scanning the 

data file, only points that were inserted in the list 

before the creation of the temporary file are 

guaranteed to be in the skyline and are output. The 

remaining points must be compared against the ones 

in the temporary file. Thus, BNL has to be executed 

again, this time using the temporary (instead of the 

data) file as input. The advantage of BNL is its wide 

applicability, since it can be used for any 

dimensionality without indexing or sorting the data 

file. Its main problems are the reliance on main 

memory and its inadequacy for on-line processing 

because it has to read the entire data file before it 

returns the first skyline point. 

 

a. B-Tree 

 The Calculation of the skyline can also be 

facilitated by using Hierarchical index structures. In 

(Börzsönyi, 2001), a method based on B-tree was 

described. Assuming that each record has d 

dimensions and there is an index for every 

dimension, the skyline can be calculated as follows.  

 Scan the entire indexes simultaneously to and 

first match, i.e., the first record to be seen by all the 

indexes during the scan. (Table 1.1) 
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 The first match is absolute part of the skyline 

and can be returned immediately, providing a fast 

initial response.  

 Scan the rest of the index entries of the first 

dimension's index. If the record has not been seen 

before (i.e., the index entries of this record in the 

other indexes have not been examined prior to the 

first match), it is definitely not in the skyline and can 

thus be eliminated. If any of the other indexes contain 

an index entry to this record prior to the first match, 

then the record may or may not be in the skyline. To 

determine whether it is in the skyline, an existing 

skyline computation algorithm can be applied.  

 
Table 1.1: B-Tree scanning the data list. 

 
 A critical factor that will affect the performance 

of this algorithm is how fast the first match can be 

found. If a match is found late (which is likely to be 

the case for large number of dimensions), it will 

result in a high initial response time. Nevertheless, 

we can expect this algorithm to perform well in 

general, when the skyline is small and the first match 

can be found quickly. 

 

i. ZB-Tree: 

 ZB-tree method (Lee, 2007), This method is 

designed for data where all the attributes have TO 

domains. It first maps each multidimensional data 

point to a one-dimensional Z-address according to Z-

order curve by interleaving the bit string 

representations of the attribute values of that point.  

 For instance, given a 2D data point (0,5), its 

bitstring representation is (000,101) and its Z-address 

is (010001). Figure 1.4(a) depicts an example of Z-

order curve on the set of 2D data points shown in 

Figure. 1.1. By ordering data points in non-

descending order of their Z-addresses, ZB-tree has 

two very useful properties. The monotonic ordering 

property states that a data point p cannot be 

dominated by any point that succeeds p in the Z-

order.  

 Due to the monotonic ordering property of ZB-

tree, each visited data point in a leaf node that is not 

dominated by any skyline point in SL is guaranteed 

to be a skyline point and is inserted into SL and 

output to the users immediately. The clustering 

property of ZB-tree enables many index sub tree 

traversals to be efficiently pruned leading to its 

superior performance over BBS (Bin Liu, 2011). 

 

ii. Z-SKY: 

 Z-SKY (Lee, 2010)for skyline queries and  

alternative, and skyline result are carrying based on 

Z-order curves, Z-SKY is especially for large 

datasets with high data dimensionality, and  the 

extensibility of a processing framework to support 

skyline query variants. The powerful view of our Z-

SKY framework is illustrate in Figure. 1.4. It consists 

of four main components, namely, 

1. A data source (SRC),  

2. A set of skyline possibilities (SL),  

3. An algorithm library, and  

4. Dominance tests.  

 

 
 

Fig. 1.4: The Z-SKY skyline query processing  

framework. 

 

 Specifically, SRC is a set of source data points 

indexed by a ZBtree (Ken, 2007). ZBtree indexes 

data points based on their values on a Z-order curve. 

Second, SL maintains skyline 

possibilities(candidates)  indexed by another ZBtree. 

Third, the dominance tests provide different types of 

dominance relationship tests, such as (traditional) 

dominance tests, dominance and enumerate that 

complete the number of dominating points for a data 

point, k-dominance tests and subspace dominance 

tests that support k-dominant skyline queries and 

subspace skyline queries, respectively. 

 The figure 1.4 , the algorithm library maintains a 

suite of algorithms, namely, (1) ZSearch, which 

processes skyline queries, (2) ZInsert, ZDelete and 

ZUpdate, which incrementally update skyline query 

results, (3) ZBand,which evaluates skyband queries, 

(4) ZRank, which returns skyline points that dominate 

the most data points, (5) k-ZSearch, which answers k-

dominant skyline queries and (6) ZSubspace, which 

performs skyline searches on specified subsets of 

dimensions. Upon receiving a skyline query (or its 

variant), a corresponding algorithm is then invoked to 

access and examine data points from SRC with 

corresponding dominance tests. The candidates are 

kept in SL. After evaluations, skyline points are 

delivered. Likewise, to maintain a skyline result in 

presence of dataset updates, a skyline result update 

algorithm is triggered that determines the change of a 

result preserved in SL and accesses required data 

points from SRC if needed. It is noteworthy that the 

underlying operations and data structures follow a 

coherent idea and concept developed based on Z-

order curves.  
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iii. ZINC: 

 ZINC (for Z-order indexing with Nested Code) 

(Bin Liu Chee, 2010) that supports efficient skyline 

computation for data with both Totally Ordered (TO) 

as well as Partially Ordered (PO) attribute domains. 

ZINC is basically a ZB-tree that uses a novel 

encoding scheme to map PO domain values into 

bitstrings. Once the PO domain values have been 

mapped into bitstrings, the mapped bitstrings of all 

the attributes (whether TO  or PO domains) of the 

records will be used to construct a ZB-tree index. 

Thus, the index construction and search algorithms 

for ZINC is equivalent to those of ZB-tree except that 

ZINC uses a different method for dominance 

comparisons between PO domain values. ZINC is 

able to encode partial orders of varying complexity in 

a brief  manner while maintaining a good clustering 

of the PO domain values. 

 

Conclusion: 

 This paper made a brief survey on skyline 

computing an overview of some algorithms and 

techniques. Recently skyline algorithm receives an 

attractive attention in data mining and big data field. 

Skyline queries retrieve the non-dominated points 

from a large database system based on the user 

preference so it can be used in partial based 

applications. However, all existing database 

algorithms for skyline Computations have several 

deficiencies, which severely limit their applicability. 

BNL, SFS and D&C are not progressive. Bitmap is 

applicable only for datasets with small attribute 

domains and cannot efficiently handle updates. Index 

cannot be used for skyline queries on a subset of the 

dimensions. SFS, like all above algorithms, does not 

support user-defined preferences. LESS should 

consistently perform better than SFS. SaLSa 

algorithm is the ability of computing the result 

without having to apply dominance tests to all the 

objects in the input relation.  
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