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 In this paper, a dynamical model that describes the transmission of leptospirosis is 
proposed and  analyzed. The human population is divided into three compartments 

depending on disease status, susceptible, infected and recovered compartment. The rat 

population is divided into two compartments, susceptible and infected compartment. 

We take into account the effect of rainfall in both dry and rainy seasons for our model.  

The stability theory of differential equations was determined by using the Routh – 

Hurwitz criteria. The stability conditions both disease free equilibrium and endemic 
equilibrium are found and their stabilities are investigated, which depended on the basic 

reproductive number. If 0 1  , the disease free equilibrium point is local 

asymptotically stable that mean, the disease will die out.  But if 0 1  , there exist 

the endemic equilibrium, which is local asymptotically stable that there will be  

leptospirosis outbreak. The numerical simulations are presented to support the analytic 
results of the model. 
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INTRODUCTION 

 

Leptospirosis is a health problem in tropical and 

subtropical regions. Leptospirosis is an infectious 

disease caused by pathogenic bacteria called 

Leptospira, that are transmitted directly or indirectly 

from animals to humans by contact with the urine or 

blood of infected animals or by contact with a 

Leptospira-contaminated environment. Leptospira 

come into body through cuts or abrasions of skin, or 

mucous membranes (nose, mouth, eyes) and 

sometimes through waterlogged skin via the moist 

soil or water which is contaminated with the waste 

products of infected animals. The population at risk 

is the people who have the occupation which contact 

animals, soil and water, such as: mine workers, sewer 

workers, fish workers, veterinarians, slaughterhouse 

workers, agriculture workers and the disease has also 

been associated with the people who swimming, 

wading, kayaking, and rafting in contaminated lakes 

and rivers. In humans, leptospirosis can cause a wide 

range of symptoms, including: high fever, headache, 

chills, muscle aches vomiting, jaundice (yellow skin 

and eyes), red eyes, abdominal pain, diarrhea, rash. 

Symptom of  leptospirosis may last from a few days 

to 3 weeks or longer (CDC,2014). Lau C.L. et al. 

(2010) said that heavy rainfall flooding and also 

natural disasters increase the risk of leptospirosis by 

bringing bacteria and their animal hosts into closer 

contact with humans.  

Many model which consist the system of 

differential equations have been proposed to 

represent the dynamics of both human and vector 

population. In 2010, Zaman G. considered the real 

data to studied the dynamical behavior and role of 

optimal control theory of leptospirosis disease. In 

2012, Zaman G. et al. presented the dynamical 

interaction including local and global stability of  

leptospirosis infected vector and human population. 

Khan M.A. et al. (2014) presented the optimal 

control problem applied to a dynamical 

leptospirosis infected vector and human population 

by using multiple control variables. Jantraporn 

Suksawat and Surapol Naowarat. (2014) proposed 

and analyzed SIR model for Conjunctivitis which 

take into account the effect of rainfall on hot and 

cool season. In this paper, we consider effect of 

rainfall on the dynamical transmission model of 

leptospirosis. In section 2, we formulate the propose 

model. In section 3, we  analyze the model by 

stability theory of differential equations, to 

determine disease free and endemic equilibrium, 

derive the basic reproductive number and  

investigate the stability of the model. In section 4, 

we present the numerical simulations to support the 
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analytic results. Finally, we conclude our study in 

section 5. 

 

Model Formulation: 
In this study, we formulated the 

mathematical model of leptospirosis with SIR 

(Susceptible-Infected-Recovered) model for 

human population and SI (Susceptible-Infected) 

model  for vector (rat) population. We assume that 

Sh(t) represents number of susceptible human at time 

t; Ih(t) represents number of infected human at time t; 

Rh(t) represents number of recovered human at time 

t. For rat population, Sv(t) represents number of 

susceptible rat at time t; Iv(t) represents number of 

infected rat at time t. The total population of human 

and rat are constant denoted by Nh(t) and Nv(t). Thus, 

Nh(t) = Sh(t) + Ih(t) + Rh(t) and Nv(t) = Sv(t) + Iv(t). 

The diagram which showed the interaction of both 

human population and rat population are presented in 

Fig.1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: The diagram for the dynamical transmission model of leptospirosis. 

 

The definitions of variables and parameters are 

given as follows: 

h   is the birth rate of human population,  

v   is the birth rate of rat population, 

h   is the natural mortality rate of human 

population, 

v   is the natural mortality rate of rat 

population, 

1   is the rate of direct transmission from 

infected human,  

2  is the rate of transmission from infected rat, 

3  is the rate of the disease carrying of 

susceptible rat per host per unit time, 
 

h  is the rate of the immune human become 

susceptible again, 

h  is the recovered rate for human from the 

infections,
 

G( t )  is the rainfall in the particular 

season. 

The dynamical transmission model of  

leptospirosis are described by the follow system of 

five non-linear differential equations as follows: 

hhhh1h2hhhh
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dt
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Model Analysis: 

Equilibrium Points: 

We first determine the equilibrium  points. The 

system has two equilibrium points; disease free 

equilibrium points and endemic equilibrium points. 

By setting the right hand side of equations (1) – (5) 

to zero. We found two equilibrium points.  

 

1. Disease Free Equilibrium Points (E0): 

In the case of disease free and we take into 

account dry season, that is Ih = 0, Iv = 0. Thus, we 

found E0(Sh,Ih,Rh,Sv,Iv) = (Nh,0,0,Nv,0). 

 

2. Endemic Equilibrium Points (E1):  
In the case the disease is presented and we take 

into account rainy season, that is Ih   0, Iv   0. We 

obtained

 

h hS

h hN

h hR

v vN

2 h vS I

h hI

v vS
v vI

  3 v hG t S I

1 h hS I
h hI

hS

  
hI

 

hR

  

vS

  
vI

 

h hR



63                                                                     Supaporn Jitjumnong et al, 2015 

Australian Journal of Basic and Applied Sciences, 9(13) Special 2015, Pages: 61-66 

 

  
  )I)t(G(II)t(GN)I)t(G(

)I)t(G()(NI
S

*
h3v

*
hv1

*
h3vv2

*
h3vvhhh

*
h3vvhhhh

*
hhh*

h









                   (6) 

1

31
2
22*

h
A2

AA4AA
I




                                                                   (7)                                           

hh

*
hh*

h

I
R








                                                                                                                                (8)

 

  *
h3v

vv*
v

ItG

N
S








                                                                                                      (9)

 
  *

h3vv

*
h3vv*

v
ItG

ItGN
I








                                 (10) 

Where: 
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Thus the endemic equilibrium points become  * * * * *

1 h h h v vE S ,I ,R ,S ,I . 

 

Basic Reproductive Number ( 0 ): 

The basic reproductive number is obtained by 

the characteristic equation at the disease free state  

E0(Sh,Ih,Rh,Sv,Iv) = (Nh,0,0,Nv,0). From the 

characteristic equation we considered the quadratic 

equation
2

1 2 .B B     

Where:   

1 v h h 1 hB N ,        

 2 h v h v 1 h v 2 3 h vB N G( t ) N N .          
                                                                                                      

For the conditions of the Routh-Hurwitz criteria 

(Allen, 2006) which the values of
 1 0B   and 

2 0B   that mean: 
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We obtaind the basic reproductive number as 

shown, 
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Stability Analysis: 

In this section, The stability analysis of an 

equilibrium point; disease free equilibrium points 

and endemic equilibrium points is determinded from 

the Jacobian matrix of the system.  

 

For the disease free state (E0): 

The Jacobian matrix at E0  is given by 
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The eigenvalues of Jacobian matrix J0 at the 

disease free state E0 are obtained by solving 

 0det J I 0   and the characteristic equation that 

we obtained is given below: 

 

    2

h v h h 1 2B B 0                   (12)  

Where:  

1 v h h 1 hB N ,        

 2 h v h v 1 h v 2 3 h vB N G( t ) N N .              

From the characteristic equation, we can see that 

 1 h 2 v 3 h h0, 0, 0                . 

The other two are the solution of quadratic 

equation 
2

1 2B B   . The two eigenvalues of 

2

1 2B B  
 
will have negative real parts if they 

satisfy the Routh-Hurwitz criteria.  Thus, the disease 

free state (E0) is locally asymptotical stable for
 

0 1   where 
2

1 2B B    satisfies the following 

two conditions below: 

1.
 1 0,B     

2.
 2 0.B    

 

For the disease endemic state (E1):  
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In the same manner for the disease endemic state, the Jacobian matrix at E1 is given by
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Where * * * * *

h h h v vS ,I ,R ,S ,I  are given by equation (6) – (9) and the characteristic equation of Jacobian matrix at 

E1, becomes equation (14): 
5 4 3 2

1 2 3 4 5C C C C C 0.                               (14) 

Where:  
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hhcK   , 
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The five eigenvalues of
 

5 4 3 2

1 2 3 4 5 0C C C C C          will have negative real parts if they 

satisfy the Routh-Hurwitz criteria.  Thus, the disease endemic state (E1) is locally asymptotical stable for 

0 1   when
5 4 3 2

1 2 3 4 5 0C C C C C           satisfies the following conditions:
 

1. 
1 2 3 4 5C 0,C 0,C 0,C 0,C 0,       

2. 2 2

1 2 3 3 1 4C C C C C C ,    

3.     
22 2 2

1 4 5 1 2 3 3 1 4 5 1 2 3 1 5C C C C C C C C C C C C C C C .        

                         

Numerical Results: 

In this section, we present the numerical simulation of the proposed model. The parameter values that we 

used in the numerical simulations are given in Table 1. 

 

Stability of disease free state:  
From the values of parameters in Table 1, we obtained the eigenvalues and basic reproductive number are: 

7

1 2 3 4 5 00.00004215, 0.00182648, 0.00281993, 0.026712, 0.00182327, 5.849 10                 

Since all of eigenvalues are to be negative and the basic reproductive number is to be less than one, the disease 

free equilibrium will be local asymptotically stable, as is demonstrated in Fig. 2.  

 
Table 1: Parameter values used in the numerical simulations at disease free state.  

Notation Parameter description Value 

hN
 

Total number of human 1,000 

Nv Total number of rat 500 

h  Birth rate of human population
 

4.2110-5 day-1 

v  
Birth rate of rat population 1.8310-3 day-1 

h  Natural mortality rate of human population
 

4.2110-5 day-1 

v  
Natural mortality rate of rat population

 
1.8310-3 day-1 

1  
Rate of direct transmission from infected human

 
410-5 

2  
Rate of transmission from infected rat

 
410-5 

3  
Rate of the disease carrying of susceptible rat per host per unit time

 
410-5 
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h  Rate of the immune human become susceptible again 1/360 day-1 

h
 

Recovered rate for human from the infections 1/15 day-1 

G( t )
 

Rainfall in dry season 0.0001 

 

 

 

 

 

 

 

 

 

                           

                     (a)                                                             (b)                                                            (c) 

 

 

 

 

 

 

 

 

 

 

                                                    (d)                                                                   (e) 

Fig. 2: Time series of (a) Susceptible human (Sh), (b) infected human (Ih), (c) recovered human (Rh), (d) 

Susceptible rat (Sv) and (e) infected rat (Iv). We see fractions of populations approach to the disease 

free state E0(1000,0,0,500,0). 

 

Stability of disease endemic state:  

We change the value of the rainfall in rainy season ; G(t ) 0.60 and keep the other values of parameter  to 

be those given in Table 1. We obtained the eigenvalues and basic reproductive number are: 

1 2 3 4 5 00.03946254, 0.00281992, 0.00182648, 0.00004214, 0.01092724, 4.9197               

Since all of eigenvalues are to be negative and the basic reproductive number is to be greater than one, the 

endemic equilibrium will be local asymptotically stable, as is demonstrated in Fig. 3.  
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  Fig. 3: Time series of (a) Susceptible human (Sh), (b) infected human (Ih), (c) recovered human (Rh),  
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G t N N
.

N

 

   
 

 

(d) Susceptible rat (Sv) and (e) infected rat (Iv). We see fractions of populations approach to disease  

endemic state E1(289.35,28.76,679.89,362.95,137.05). 

 

Conclusion: 

From the model, the basic reproductive number 

is                                         The basic reproductive  

 

 

number is the threshold condition for 

investigating the stability of the solutions of model 

(Anderson R.M. and May R.M., 1991).  If
 0R 1 , the 

disease free equilibrium point is local asymptotically 

stable as shown in Fig. 2, that is disease will die out.  

If 
0R 1 , the endemic equilibrium point is local 

asymptotically stable as shown in Fig. 3, that is there 

will be  leptospirosis outbreak. Our simulated 

results showed that 0 will increase when the 

rainfall increase. We found that the values of
 0  

were 5.84910
-7

, 4.9197 when G(t) = 0.0001, 0.60, 

respectively. It seen that the infected human will 

decrease when the rainfall decreases. Thus, the 

susceptible human have less change of  being 

infected with Leptospira when they do not come in 

contact with contaminated water.  
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