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 In this paper, multivariate data analysis based on Partial least squares projection to 
Latent Structure (PLS) is utilized as an alternative approach to study the process 
variables-output responses relationship on a published data from an In-situ catalytic 
adsorption steam gasification pilot plant for H2 production. Performance comparison 
between the multivariate PLS analysis is compared with the reported data in literature 
obtained using RSM, ANOVA analysis and three dimensional surface plots. Results 
show promising capability of the multivariate PLS approach in allowing the variables-
responses relationship to be studied simultaneously. 
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INTRODUCTION 

 
 Gasification technologies offer the opportunities 
to convert lignocellulose biomass into clean fuels i.e. 
hydrogen or synthesis gases which is mixture of CO 
and H2 (Chaubey, Sahu, James, & Maity, 2013); 
(Yusup, Khan, Ahmad, & Rashidi, 2014). Biomass 
gasification is usually added up by steam and catalyst 
to improve the product gas composition towards 
hydrogen rich gas production. More recently, the 
addition of in-situ CO2 adsorbent in gasification 
process makes biomass as a negative CO2 emitter. 
Palm oil waste is considered to be a source of 
renewable hydrogen especially in Malaysia which 
produced huge amount of oil palm 
wastes.Gasification using palm kernel shell (PKS) 
can be done either by using air or steam gasification 
using either fixed or fluidized bed reactor (Esfahani, 
Wan Ab Karim Ghani, Mohd Salleh, & Ali, 2011); 
(Mohammed, Salmiaton, Wan Azlina, Mohammad 
Amran, & Fakhru'l-Razi, 2011). 
 PKS gasification typically involves a number of 
process variables, and various studies have been 
done to investigate the effect and interaction of these 
process variables (Yusup et al., 2014); (Fermoso et 
al., 2010). In (Yusup et al., 2014) particularly, the 
interactions among temperature, steam to biomass 
mass ratio, adsorbent to biomass mass ratio, 
superficial velocity and biomass particle size for in-
situ catalytic adsorption (ICA) steam gasification 
process of palm kernel shell for H2 production were 
studied. In their paper, the influence of the five 

process variables on two output responses (H2 
composition and yield) were analyzed using 
Response Surface Methodology (RSM) based on 
Centered Composite Rotatable Design (CCRD) 
approach. ANOVA analysis and three dimensional 
surface plots were utilized to study and visualize the 
interaction of any two process variables at a time on 
a specific output response variables. 
 In this paper, an alternative approach in studying 
the process variables interactions and influences on 
the same data presented in (Yusup et al., 2014) is 
investigated using the multivariate data analysis 
(MVDA) methods. Based on statistical projection 
method, MVDA is a cutting edge technology that 
provides graphical plots and projections by 
extracting information from multivariate and 
complex series of data (i.e. multiple variables 
measured on multiple samples or at multiple time 
points) simultaneously. In comparison to classical 
statistical methods such as Multiple Linear 
Regression, MVDA offers certain advantages in 
handling dimensionality problem, handling short and 
fat and long and lean data tables, dealing with 
missing data and affording helpful as well as 
investigative graphical tools (Eriksson, Johansson, 
Kettaneh-Wold, & Wold, 2001; Tauhid-Ur-Rahman, 
2005). In this paper, Partial Least Squares projections 
to latent structures or PLS will be employed. 
 
Methods: 
 Assume X is an N x K matrix of predictor or 
input variables, and Y is an N x M matrix of response 
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or output variables, where N is the number of 
observations corresponds to, for example, the 
chemical samples, and K and M are the number of 
input and output variables, respectively. In MVDA, 
principal component analysis (PCA) forms the basis 
for most multivariate data analysis (Eriksson et al., 
2001);(Lindgren, Geladi, & Wold, 1993; Saikat & 
Jun, 2008; Wold, 1987).  However, one drawback of 
PCA technique is that it captures only the 
characteristics of the X-matrix or the input variables 
(Saikat & Jun, 2008). Any sort of relation that may 
exist between each input variable and the response or 
output variable is not captured. In multivariate 
regression analysis however, significant benefits can 
be achieved if as much information in the X-matrix 
can be captured as well as in the relation between the 
input variables X-matrix and the output variable Y-
matrix. PLS provides an alternate approach that 
allows us to achieve this balance (Saikat & Jun, 
2008). 
 
Partial least squares projection to Latent 
Structures: 
 The PLS technique works by successively 
extracting principal components from both X and Y 
such that covariance between extracted principal 
components is maximized. PLS method tries to find a 
linear decomposition of X and Y such 

that ETPX T +=  and FUCY T += where the 
information related to the observations are stored in 
the score matrices T (N x A) and U (N x A); the 

information related to the variables are stored in the 
X-loading matrix PT (K x A) and the Y-weight 
matrix CT (M x A). The variation in the data that was 
left out of the modelling form the E (N x K) and F (N 
x M) residual matrices (Eriksson et al., 2001; Saikat 
& Jun, 2008).  
 Note that the principal components for X and Y 
are extracted successively and the number of 
principal components extracted, A, depends on the 
rank of X and Y. Decomposition is finalized so as to 
maximize covariance between T and U. There are 
multiple algorithms available to solve the PLS 
problem. However, all algorithms follow an iterative 
process to extract the principal components of X and 
Y. 
 
Materials and data: 
 The In-situ Catalytic Adsorption (ICA) Steam 
Gasification System pilot plant used in this analysis 
is as described in (Yusup et al., 2014). The feedstock 
used was palm kernel shell. The present study 
considers five process variables; temperature, steam 
to biomass ratio, adsorbent to biomass ratio, 
fluidization velocity and biomass particle size. The 
data generated using CCRD design in (Yusup et al., 
2014) with 26 experimental runs are used for the PLS 
analysis in the next sections. The X-block consists of 
the five process variables, and the Y-block consists of 
the two output response variables, namely H2 yield 
and H2 composition (see (Yusup et al., 2014)). 

 

 
 
Fig. 1: PLS decomposition parameters. 
 

RESULTS AND DISCUSSIONS 
 
 In this paper, the MVDA using PLS is applied 
using SIMCA-P software by Umetrics AB (Eriksson 
et al., 2001). Applying the PLS analysis on the data 
set, cross-validation technique inherent in SIMCA-P 
software generated a PLS model with single 
significant principal components (A = 1) as shown in 
Figure 2. The amount of variation in Y explained in 
terms of sum of squares, R2Y is 43%, and it 

measures how well the model fits the data.  On the 
other hand, the percent of variation of the training set 
predicted by the model according to cross validation, 
Q2 is 38% and it indicates how well the models 
predicts new data. Manually increasing the number 
of principal components results in greater 
deterioration in the predictive capability of the PLS 
model as indicated by the Q2 value shown in Figure 
3. Hence, for the subsequent analysis in this paper, 
only the first principal component is analyzed. 
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Fig. 2: Significant principal component given by SIMCA-P. 
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Fig. 3: The effect of increasing number of principal components to three. 
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Fig. 4: PLS t1/u1 scores plot. 
 
 Figure 4 shows the PLS t1/u1 scores plot of the 
model for the pilot plant data. It can be observed that 
a fairly strong correlation between the input variables 
and the response or output variables. There are no 
outliers, i.e. off-diagonal points, and this is expected 
as the data on the 26 experimental runs are based on 
design of experiments (DOE). The loading line plot 
(Figure 5) displays the major relation between the 
process variables (X) and the output responses (Y). 
Responses opposite to each other are negatively 
correlated and positively correlated to responses 
situated near them. Variables situated near responses 
are positively correlated to them and those situated 
opposite are negatively correlated to the responses. 
Hence, from Figure 5, it can be clearly observed that 
for both H2 composition (Y1) and H2 yield (Y2), 
temperature seems to be the most important factor. 
H2 composition lies on the opposite quadrant of 
temperature, i.e. they are negatively correlated to 
each other. In other words, an increase in 
temperature will result in a decrease of H2 
composition due to reverse carbonation reaction that 
dominates (Yusup et al., 2014) resulting in higher 
amount of CO2 in the product gas, and consequently 
a reduction in the H2 composition. Further, H2 yield 
is positively correlated with temperature (within the 
temperature range studied, i.e. 600-750oC) since they 
are in the same quadrant of the plot, indicating that 
H2 yield will benefit at higher temperatures. These 

findings agree with those reported in (Yusup et al., 
2014).  
 For a PLS model, SIMCA-P displays the PLS 
regression coefficient plots with respect to both H2 
composition and H2 yield are shown in Figures 6-7. 
It is important to note that if DOE has been used for 
the generation of X-data, which is the case for the 
current data set, these coefficients express a causal 
relationship. In addition, the coefficients are 
independent in such a way that Y is expected to 
change by the amount indicated by the coefficient 
value. The coefficients basically express how 
strongly Y is correlated to the systematic part of each 
of the X-variables. It can be clearly observed from 
the loadings line plot in Figure 5, and the 
corresponding coefficients plots in Figures 6-7, that 
for H2 composition, the most important variables are 
temperatures and adsorbent to biomass ratio. Even 
though H2 composition increases with increased 
adsorbent to biomass ratio, as previously mentioned, 
excess amount of adsorbent at high temperatures 
would only promote reverse carbonation reaction and 
hence reduces the overall H2 composition in the 
product gas. For H2 yield, the response is positively 
correlated with the most important variables that are 
temperatures, steam to biomass ratio and adsorbent 
to biomass ratio. These findings are in agreement 
with the results reported in (Yusup et al., 2014). 
Increasing the temperature has favorable effect on 
the H2 yield because endothermic reactions such as 
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char gasification, steam methane reforming and tar 
cracking or reforming contribute to more H2 

production in the product gas (Yusup et al., 2014).  
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Fig. 5: Loading line plot. 
 

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

0.1

X
1

X
2

X
3

X
4

X
5

�
C

oe
ffC

S
[1

](
2 

(Y
1)

)

Var ID (Primary)

DATASIMCA2.M1 (PLS)
�CoeffCS[Last comp.](2 (Y1) )

SIMCA-P 11 - 9/24/2014 10:13:05 AM  
 
Fig. 6: Coefficient plot for Y1. 
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Fig. 7: Coefficient plot for Y2. 

 
Conclusions: 
 An alternative approach in studying the process 
variables interactions and influences on the same 
data presented in (Yusup et al., 2014) for H2 
production has been investigated using multivariate 
PLS method.  The results obtained are in good 
agreement with the reported data in (Yusup et al., 
2014) using conventional methods. 
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