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 Background: Aqueous solution of alkanolamines such as MEA, DEA and MDEA has 
been used as the potential solvents for the removal of acidic gases like CO2 and H2S 
from power plants and various other industries. Objective: A computational model 
based on artificial neural networks (ANNs) has been developed to predict the density of 
aqueous MEA solution. Statistical analysis of the predicted data has also been 
performed. Results: A good agreement was found between the predicted and literature 
data. Conclusion: The value of low predicted error via statistical analysis showed that 
the applied model can successfully predict the density of the aqueous MEA solution. 
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INTRODUCTION 

 
 Lately, it has been shown that global warming is 
one of the main environmental issues due to the 
increasing concentration of carbon dioxide (CO2) 
(Mondal et al., 2015). It is subsequently important to 
develop and utilize efficient techniques for CO2 gas 
removal. Post-combustion capture using absorption 
is one of the most widely used technique to remove 
CO2 and alkanolamines have long been recognized as 
viable solvents for CO2 removal in industries and 
power plants. Due to the strong base nature and fast 
reactivity with CO2, aqueous monoethanolamine 
(MEA) is still considered as the most popular 
solvents for CO2 capture in industries (Wong et al., 
2015). 
 Physiochemical properties such as density of 
aqueous MEA is very important for the analysis of 
absorption and desorption processes (Shaikh et al., 
2014; Teng et al., 1994). Many studies have been 
done to find out the density of aqueous MEA at 
different concentration and temperature conditions. 
But the measurement of density of aqueous MEA at 
different other temperatures and concentrations is 
very costly, time-consuming and difficult. So, lately, 
a new computational prediction technique named 
artificial neural network (ANN) has attracted great 
attention. For example, Golzar et al. (2014) has used 
multilayer perceptron ANN model to predict the 
thermophysical properties of binary mixtures of 
common ionic liquids with water or alcohol. 
 In this study, a computational model based on 
ANNs was developed to predict the density of 

aqueous MEA solution. All the data used in this 
work was taken from literature (Han et al., 2012).  A 
statistical analysis of the data was performed in terms 
of least square correlation (R2), root mean square 
error (RMSE), average relative deviate (ARD), 
standard deviation (SD) and average absolute 
deviation (AAD).  
  

MATERIALS AND METHODS 
 

 The following subsections provide information 
about the density database utilized, ANN, and the 
model used, as well as the parameters and 
optimization processes. 
 
Density database of aqueous MEA solution: 
 The data used in this work for the prediction of 
density of aqueous MEA solution was taken from 
Han et al., (2012). A total of 180 data sets were taken 
and used to develop a computational model.  
 
Artificial Neural Network Model: 
 The prediction of the density data of aqueous 
MEA solution was done through ANN-based model.  
Neural networks are valuable numerical strategies 
motivated by the function of human brain. Neural 
networks are computational structures comprising of 
substantial quantities of basic process units 
connected on an enormously parallel scale. These 
units are similar to neurons existing in human brain 
and the synapse they form. 
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 Each neuron is associated with a set of some 
input connections as the processing elements and as 

well as the single output, shown in Fig. 1. 

 

 
 
Fig. 1: Schematic of components of simple neuron. 
 
 The expression for output activation can be 
described as follows: 
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 The function g(a(x)) is denoted as the activation 
function, where b is the neuron bias present in the 
neural network, it is biased because in case of no 
inputs then b would be the pre-activation. 
w is the connection weight vector, described as: 

[ ]Nwwwww ,....,,, 321=  
 And x is the input vector, described as: 

[ ]Nxxxxx ....,,, ,321=  
 The specific model proposed in this work for the 
prediction of density data is multilayer perceptron 
(MLP), the most common type of ANN (Torrecilla et 
al., 2007). 
 
Multilayer perceptron model (MLP): 
 A multilayer perceptron (MLP) is feed-forward 
neural network which needs a preferred output in 
order to learn. A MLP neural network comprises of 
input layer, hidden layer and output layer. The point 
of MLP neural network is to make a model that 
appropriately maps a set of input information onto a 
set of suitable outputs utilizing historic information 
so that the model can be used to generate an output 
when the preferred output is vague (Nikravesh and 
Aminzadeh, 2001). In order to train the network, 
MLP utilizes a supervising learning technique known 
as back-propagation. In this technique, at first, all the 
weights are adjusted arbitrarily, then the output is 
compared with the targeted values in the training sets 
and the desired error is propagated back into the 
network.  This procedure is repeated continuously 
until the outputs are acceptably close to the target 
values (Celikoglu, 2006; Wu and Liu, 2012). 
 
Training neural networks: 
 When a neural network is formed for a specific 
application, it is prepared to be trained. Training is 
the methodology by which connection weights are 
assumed. Initially, the weights are picked up 
haphazardly. There are two types of training 
methodology: supervised and un-supervised training. 
Supervised training (ST) is refined by providing 
neural network a set of sample data alongside the 
expected output from each of these samples. ST is 

the most widely recognized type of neural network 
training. As the ST starts, the neural network is taken 
through a series of iterations or epochs till the time 
the output data matches with the targeted data with a 
sensibly small error. Unsupervised training (UST) is 
similar to ST with the exception that no targeted 
values are provided. UST generally arises when 
neural network characterize the inputs into some 
groups (Mirarab et al., 2014). 
 
Validating neural networks: 
 After the neural network is trained, it must be 
assessed to check whether it is prepared for genuine 
use. This step is vital to be deliberately performed to 
figure out whether additional training is needed. To 
accurately validate a neural network, different data 
sets for validation must be kept aside from training 
data sets. It is exceptionally essential that different 
data sets may be for validation. Training the neural 
network with a desired set and furthermore utilizing 
the same set to predict the error of the whole neural 
network will most likely prompt to bad results. The 
error obtained utilizing the training sets will 
considerably be lower than the error on the 
remaining data sets of neural network. The reliability 
of the validated data must be maintained 
continuously. In the event that validation is 
performed poorly, this probably implies that there 
was data present in the validation set that was not 
accessible in the training set. The way that this 
condition should be resolved is by attempting an 
alternate, more arbitrary, method for differentiating 
the data into training and validation sets. If it fails, 
the validation and training sets must be merged 
together as one huge training set. At that point, new 
data must be obtained to serve as the validation data. 
In some situations, it may be difficult to acquire 
additional data for either training or validation. 
While this methodology will do without the security 
of a proper validation, if additional data cannot be 
acquired, this may be the only alternative (Mirarab et 
al., 2014). 
 
Testing neural networks: 
 The test error is not utilized in the training sets, 
but is merely used once the network has been 
established, to measure the model accuracy. It is also 
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helpful to plot the test error during the training 
process. In the event that the error in the test set 
reaches a minimum value at a different iteration 
number than the validation set error, this may show 
that the data sets are poorly divided. The existence of 
irregular noise can also have a significant impact on 
the capability of neural network to separate between 
cases near decision limits which will lead to 
inaccurate predictions (Mirarab et al., 2014). 
 
Optimization procedure: 
 The optimal design of the artificial neural 
network (ANN) was figured out by trial and error 

method. In this study, the number of neurons in the 
hidden layers was found out by optimizing the mean-
squared error (MSE). Actually, a low number of 
neurons may not result in enabling a network to 
achieve the anticipated error, while a large number 
may cause over fitting. The performance of ANN 
was assessed by calculating the MSE versus number 
of neurons, as shown in Fig. 2. It is apparent from 
Fig. 2 that the lowest MSE was obtained with nine 
neurons. Therefore, nine neurons were selected as the 
optimum condition for the present study.  

 

 
 
Fig. 2: Variation of Performance (MSE) with number of neurons. 
  

RESULTS AND DISCUSSION 
 
Prediction of density using ANNs: 
 In this study, a total of 180 data points were 
utilized from literature to analyze the prediction 
performance of ANN technique. Mole fraction of 
water, mole fraction of MEA and operational 
temperature was taken as input variables, while 
density was assigned as output. All the 180 data 
points were randomly divided into three data sets, i.e. 
70% for training (126 data points), 15% for 
validation (27 data points) and 15% for testing (27 
data points). 

 For density prediction of aqueous MEA, a 
multilayer perceptron (MLP) model of ANN was 
utilized with back propagation algorithm. This 
specific model was chosen based on their capability 
to represent the non-linear relationship between input 
and output data. Levenberg-Marquardt was utilized 
as a training function for MLP neural network due to 
its good performance in non-linear regression 
problems (Mirarab et al., 2014). The optimum 
number of neurons in hidden layer was chosen by 
optimization procedure. Tan-sigmoid transfer 
function was used to train the MLP neural-network 
(Fig. 3). Therefore, in our study, nine neurons were 
selected in the hidden layers. 

 

 
 
Fig. 3: Artificial Neural Network (ANN) design for prediction of density. 
 
 The performance analysis of prediction data for 
training, validation and testing data-sets was done in 
terms of mean square error (MSE). So, a graph of 
MSE vs epochs was plotted for training, validation 
and testing data-sets to get the best neural network 
configuration as shown in Fig. 4. It is clearly seen 
from Fig. 4 that the MSE values decreased as the 

number of epochs increased because the weights 
have been updated after each epoch. 
 A comparison of predicted density results from 
the proposed MLP neural network model with 
literature data is shown in Fig. 5 for training, 
validation and testing respectively.  It is evident from 
Fig. 5 that the predicted results were in very good 
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agreement with the literature data. Table 1 
summarizes the literature and predicted data of 

aqueous MEA with corresponding data sets used in 
the ANN modeling. 
 

 
 
Fig. 4: Variation of Performance (MSE) vs Epochs for training, validation and testing data sets. 
 

 
 
Fig. 5: Evaluation of ANN predicted and experimental data of density for training, validation and testing data 
       sets. 
 
 Validation performed in the developed model is 
done by means of external test based on the 
following statistical quantities: 
 
Least-squared correlation (R2):  
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Root mean square error (RMSE):  
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Standard deviation (SD): 
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Table 1: Experimental and predicted data of density with corresponding data sets used in ANN modeling. 
Run No. Temperature (K) Mole Fraction  Density (kg/m3) 

  x[MEA] x[H 2O]  Experimental Predicted 
Training Set       

1 298.15 0 1  997 996.99270 
2 298.15 0.1122 0.8878  1010.9 1010.83227 
3 298.15 0.2278 0.7722  1021.3 1021.16469 
4 298.15 0.4077 0.5923  1026.3 1026.29901 
5 298.15 0.5412 0.4588  1024.7 1024.72866 
6 298.15 1 0  1011.9 1011.85753 
7 303.15 0 1  995.6 995.60765 
8 303.15 0.1122 0.8878  1008.4 1008.59162 
9 303.15 0.1643 0.8357  1013.8 1013.69935 
10 303.15 0.3067 0.6933  1021.4 1021.45642 
11 303.15 0.4077 0.5923  1022.8 1022.82980 
12 303.15 1 0  1008 1007.98017 
13 308.15 0.1122 0.8878  1006.2 1006.20062 
14 308.15 0.1643 0.8357  1011 1011.01756 
15 308.15 0.2278 0.7722  1015.2 1015.25074 
16 308.15 0.4077 0.5923  1019.3 1019.26992 
17 308.15 0.5412 0.4588  1017.3 1017.33607 
18 308.15 0.7264 0.2736  1012.3 1012.37012 
19 308.15 1 0  1004 1004.04496 
20 313.15 0 1  992.2 992.19475 
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21 313.15 0.2278 0.7722  1012.1 1012.14469 
22 313.15 0.4077 0.5923  1015.7 1015.65006 
23 313.15 0.7264 0.2736  1008.5 1008.45972 
24 318.15 0.1122 0.8878  1001.1 1001.02991 
25 318.15 0.1643 0.8357  1005.3 1005.32451 
26 318.15 0.2278 0.7722  1009 1008.95781 
27 318.15 0.3067 0.6933  1011.4 1011.34403 
28 318.15 0.4077 0.5923  1012 1011.99048 
29 318.15 0.5412 0.4588  1009.7 1009.71062 
30 318.15 1 0  996 996.02352 
31 323.15 0 1  988 988.00682 
32 323.15 0.1122 0.8878  998.1 998.26626 
33 323.15 0.2278 0.7722  1005.6 1005.69385 
34 323.15 0.3067 0.6933  1007.8 1007.85711 
35 323.15 0.4077 0.5923  1008.3 1008.29865 
36 323.15 0.5412 0.4588  1005.9 1005.86738 
37 328.15 0 1  985.7 985.65316 
38 328.15 0.1122 0.8878  995.5 995.39171 
39 328.15 0.1643 0.8357  999.2 999.23367 
40 328.15 0.2278 0.7722  1002.4 1002.35352 
41 328.15 0.3067 0.6933  1004.4 1004.31514 
42 328.15 0.4077 0.5923  1004.6 1004.57272 
43 328.15 0.5412 0.4588  1002 1002.01007 
44 333.15 0.1643 0.8357  996.1 996.04696 
45 333.15 0.2278 0.7722  999 998.93687 
46 333.15 0.3067 0.6933  1000.7 1000.71468 
47 333.15 0.4077 0.5923  1000.8 1000.80631 
48 333.15 0.5412 0.4588  998.2 998.13104 
49 333.15 0.7264 0.2736  992.7 992.62845 
50 333.15 1 0  983.9 983.83242 
51 338.15 0 1  980.5 980.49582 
52 338.15 0.1122 0.8878  989.5 989.33373 
53 338.15 0.2278 0.7722  995.4 995.44392 
54 338.15 0.4077 0.5923  997 996.99162 
55 338.15 0.5412 0.4588  994.2 994.21871 
56 338.15 1 0  979.8 979.77774 
57 343.15 0.1122 0.8878  986.1 986.16073 
58 343.15 0.1643 0.8357  989.4 989.40504 
59 343.15 0.2278 0.7722  991.9 991.87467 
60 343.15 0.3067 0.6933  993.2 993.32364 
61 343.15 0.4077 0.5923  993.1 993.12119 
62 343.15 0.5412 0.4588  990.2 990.26102 
63 343.15 0.7264 0.2736  984.6 984.64266 
64 348.15 0 1  974.8 974.81668 
65 348.15 0.1643 0.8357  985.9 985.95350 
66 348.15 0.2278 0.7722  988.3 988.22877 
67 348.15 0.3067 0.6933  989.5 989.52662 
68 348.15 0.4077 0.5923  989.2 989.18869 
69 348.15 0.5412 0.4588  986.2 986.24754 
70 348.15 0.7264 0.2736  980.6 980.59060 
71 348.15 1 0  971.6 971.64969 
72 353.15 0.1643 0.8357  982.4 982.41521 
73 353.15 0.3067 0.6933  985.6 985.65857 
74 353.15 0.4077 0.5923  985.2 985.18966 
75 353.15 0.7264 0.2736  976.5 976.48317 
76 353.15 1 0  967.5 967.54891 
77 358.15 0.1122 0.8878  976.1 976.09108 
78 358.15 0.1643 0.8357  978.7 978.78866 
79 358.15 0.3067 0.6933  981.8 981.71790 
80 358.15 0.4077 0.5923  981.2 981.12180 
81 358.15 0.5412 0.4588  978 978.02690 
82 358.15 0.7264 0.2736  972.3 972.31411 
83 358.15 1 0  963.4 963.40991 
84 363.15 0 1  965.3 965.41159 
85 363.15 0.1122 0.8878  972.5 972.54587 
86 363.15 0.1643 0.8357  975 975.07149 
87 363.15 0.2278 0.7722  976.9 976.82083 
88 363.15 0.3067 0.6933  977.7 977.70396 
89 363.15 0.4077 0.5923  977.1 976.98525 
90 363.15 1 0  959.2 959.22865 
91 373.15 0 1  958.6 958.53860 
92 373.15 0.1122 0.8878  965.3 965.15308 
93 373.15 0.1643 0.8357  967.2 967.35688 
94 373.15 0.2278 0.7722  969 968.81277 
95 373.15 0.5412 0.4588  965.3 965.21466 
96 373.15 0.7264 0.2736  959.3 959.45391 
97 373.15 1 0  950.9 950.74753 
98 383.15 0 1  951.2 951.16862 
99 383.15 0.1122 0.8878  957.4 957.34783 
100 383.15 0.3067 0.6933  960.8 960.94596 
101 383.15 0.4077 0.5923  959.8 959.82462 
102 383.15 0.5412 0.4588  956.5 956.42573 
103 383.15 0.7264 0.2736  950.6 950.67065 
104 393.15 0 1  943.4 943.32275 
105 393.15 0.1122 0.8878  949.1 949.14641 
106 393.15 0.3067 0.6933  952.1 952.19584 
107 393.15 0.4077 0.5923  950.9 950.94956 
108 393.15 0.5412 0.4588  947.6 947.50731 
109 393.15 1 0  933.5 933.48524 
110 403.15 0.1643 0.8357  941.9 942.06811 
111 403.15 0.2278 0.7722  943.1 942.99736 
112 403.15 0.5412 0.4588  938.6 938.45977 
113 403.15 0.7264 0.2736  932.7 932.84226 
114 403.15 1 0  924.7 924.71148 
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115 413.15 0 1  926.3 926.33830 
116 413.15 0.1122 0.8878  931.7 931.62617 
117 413.15 0.1643 0.8357  932.9 932.96594 
118 413.15 0.2278 0.7722  934 933.81835 
119 413.15 0.3067 0.6933  933.8 933.97909 
120 413.15 0.5412 0.4588  929.3 929.18718 
121 413.15 1 0  915.7 915.69527 
122 423.15 0 1  917.1 917.15144 
123 423.15 0.1122 0.8878  922.3 922.21163 
124 423.15 0.5412 0.4588  919.5 919.54473 
125 423.15 0.7264 0.2736  914.1 914.13966 
126 423.15 1 0  906.4 906.37070 

Validation set       
127 298.15 0.1643 0.8357  1016.3 1016.24908 
128 298.15 0.7264 0.2736  1020 1019.97633 
129 303.15 0.2278 0.7722  1018.2 1018.26485 
130 303.15 0.7264 0.2736  1016.2 1016.21613 
131 308.15 0.3067 0.6933  1018.2 1018.15288 
132 313.15 0.1122 0.8878  1003.5 1003.67682 
133 313.15 0.1643 0.8357  1008.3 1008.22279 
134 313.15 0.5412 0.4588  1013.5 1013.53844 
135 318.15 0 1  990.2 990.19181 
136 323.15 0.1643 0.8357  1002.3 1002.32716 
137 323.15 0.7264 0.2736  1000.6 1000.55254 
138 338.15 0.3067 0.6933  997.1 997.05200 
139 343.15 1 0  975.8 975.72152 
140 348.15 0.1122 0.8878  983 982.89602 
141 353.15 0.1122 0.8878  979.4 979.54005 
142 353.15 0.5412 0.4588  982.1 982.17075 
143 358.15 0 1  968.6 968.66456 
144 373.15 0.3067 0.6933  969.4 969.45973 
145 383.15 0.1643 0.8357  959.1 959.26831 
146 403.15 0 1  935.1 935.04195 
147 403.15 0.1122 0.8878  940.6 940.57638 
148 403.15 0.4077 0.5923  941.9 941.89977 
149 413.15 0.7264 0.2736  923.6 923.66691 
150 423.15 0.1643 0.8357  923.3 923.43058 
151 423.15 0.2278 0.7722  924.3 924.23176 
152 423.15 0.3067 0.6933  924.1 924.33899 
153 423.15 0.4077 0.5923  922.8 922.92461 

Testing set       
154 298.15 0.3067 0.6933  1024.8 1024.66160 
155 303.15 0.5412 0.4588  1021 1021.07644 
156 308.15 0 1  994 994.00377 
157 313.15 0.3067 0.6933  1014.7 1014.77733 
158 313.15 1 0  1000 1000.05633 
159 318.15 0.7264 0.2736  1004.5 1004.51245 
160 323.15 1 0  992 991.96308 
161 328.15 0.7264 0.2736  996.7 996.59193 
162 328.15 1 0  988 987.89476 
163 333.15 0 1  983.2 983.14499 
164 333.15 0.1122 0.8878  992.3 992.41228 
165 338.15 0.1643 0.8357  992.7 992.76996 
166 338.15 0.7264 0.2736  988.7 988.65045 
167 343.15 0 1  977.7 977.71704 
168 353.15 0 1  971.8 971.79896 
169 353.15 0.2278 0.7722  984.5 984.50538 
170 358.15 0.2278 0.7722  980.8 980.70320 
171 363.15 0.5412 0.4588  973.9 973.81634 
172 363.15 0.7264 0.2736  968.1 968.08259 
173 373.15 0.4077 0.5923  968.5 968.51752 
174 383.15 0.2278 0.7722  960.6 960.48864 
175 383.15 1 0  942.3 942.15172 
176 393.15 0.1643 0.8357  950.7 950.82941 
177 393.15 0.2278 0.7722  952 951.87621 
178 393.15 0.7264 0.2736  941.7 941.80301 
179 403.15 0.3067 0.6933  943.1 943.22401 
180 413.15 0.4077 0.5923  932.6 932.60333 

 

 Where xi, yi, nyx  and   , the experimental data, 
predicted data, mean experimental data, mean 
predicted data and the number of data points 
respectively. The acquired results of above 
mentioned statistical quantities (R2, RMSE, ARD, SD 
and AAD) for density of the predicted model focused 
around ANN for every three sets (training, validation 
and testing) as well as the total data set was arranged 
in Table 2. From table 2, it can be presumed that the 
three chosen input parameter (temperature, mole 
fraction of MEA and water) were suitable for 
predicting the density and the predicted results by the 
model are dependable on the grounds that their 
correlation and error values were in a satisfactory 
range. Furthermore, R2 values of the predicted model 

were very near to unity and their relating errors are 
very small (or negligible). 
 The plot of density data versus operational 
temperature for the literature data and ANN 
predicted data is shown in Fig. 6. It can been seen 
that predicted data showed excellent harmony with 
the literature data, demonstrating the applicability of 
ANN model to predict the density of aqueous MEA. 
 A cross plot of density data of whole literature 
and predicted data is shown in Fig. 7. It is obvious 
from Fig. 7 that the predicted data was in very good 
agreement with the experimental data, confirming the 
approach of ANN modeling in predicting the density 
successfully. 
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Table 2: Statistical parameters for Training, Validation and Testing data sets. 
Parameter Training Validation Testing All 

R2 0.99999 0.99999 0.99999 0.99999 
RMSE 0.07553 0.09316 0.08415 0.07973 
ARD 0.00006 0.00008 0.00007 0.00006 
SD 0.07583 0.09493 0.08575 0.07995 

AAD 0.05852 0.07493 0.06977 0.06267 

 

 
 
Fig. 6: Density as a function of temperature for experimental data and ANN predicted data. 
 

 
 
Fig. 7: Comparison of Experimental data with ANN predicted data in different data sets. 
 
Conclusion: 
 In the present work, we have developed a model 
using the nonlinear artificial neural network (ANN) 
technique to predict the experimental density data of 
aqueous MEA based on temperature and mole 
fraction of MEA and water. The predicted results 
disclose that the chosen parameters i.e. inputs, were 
extremely suitable for the estimation of density of 
aqueous MEA. In addition, the statistical quality 
represented by different parameters and the low 
anticipated error of the developed model show that it 
can precisely anticipate the density of the aqueous 
MEA solution. 
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