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INTRODUCTION the valleys, resulting in uniform and smooth sugfac
finish (Hassan, A.M., 1997; Ovali, and A. Akkurt,
Polymers are recently utlized in many 2011). There are a number of important parameters
tribological applications. They perform better than affecting the burnishing process, e.g. burnishing
metals in terms of bending, misalignment and shockforce, burnishing feed rate, burnishing speed, rarmb
loading (Hooke, C..et al., 1996). The polymers of tool pass, ball diameter and roller width. These
addressed in this article are polyoxymethylene parameters should be selected carefully to ensure
(POM). These materials are type of engineeringoptimal outcome (El-Axir, M. and M. El-Khabeery,
thermoplastics with good performance, higher 2003; Luca, L.gt al., 2005; Rao, D.Set al., 2008).
abrasion resistance and excellent fatigue life.In early 1975, Rajasekariah and Vaidyanathan
Besides, POM is recognized for having low wear and pointed out that burnishing has been known for a
friction characteristics, which are required in om long time but has encountered a few problems, for
engineering applications such as bearings, coupling instance a lack of understanding controlling
cams and gears. Roller burnishing is a machiningparameters (Rajasekariah, R. and S. Vaidyanathan,
process that influences certain material properties 1975). Besides good surface finish produced by
This process was traditionally used on non ferrousburnishing (Travieso-Rodriguez, J.Aet al., 2011;
materials (Hassan, A.M. and A.S. Al-Bsharat, 1996; L6pez de Lacalle, L.Negt al., 2011), this technique
Hassan, A.M. and A.M. Magqgableh, 2000; can induce compressive residual stress that ineseas
Thamizhmanii, S.et al., 2007; Dweiri, F.,et al., tensile strength and surface hardness (Fattough, M.
2003) and gradually expanded to polymers (Low, K. and M. El-Khabeery, 1989; Rao, D.%t,al., 2007;
and K.J. Wong, 2011; Low, Kgt al., 2009) and Zamashchikov, Y.l., 2006). According to the current
other materials (Thamizhmnaii, ®t,al., 2008). The  study, the utmost residual stress appeared on the
burnishing principle entails applying a polishedl ba surface and gradually decreased at greater depths.
or roller with pressure into the workpiece surfacel Following a literature review, this study was
getting feed motion into the same direction (Tign,  conducted to anticipate burnishing depth, burnighin
and Y.C. Shin, 2007). A schematic diagram of a ball speed, burnishing feed rate, roller width and
and roller burnishing process is shown in Fig. lubrication as control variables to investigate the
1.Engineering components are usually left with effects of the roller burnishing parameters to ecka
various, irregularly shaped machining marks. polyoxymethylene surface quality and hardness. The
Therefore, when the ball or roller tool applies conventional method of attaining these is via ftria
pressure the asperities get plastically compreiséed  and error,” an approach that is very time consuming
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due to the large number of experiments required.Hamdan, A., A.A. Sarhan and M. Hamdi, 2012).In
Hence, a reliable systematic approach for machiningthe present study, the Taguchi method is
parameter optimization is necessary.The implemented to the burnishing parameters to achieve
experimental process applied is the Taguchithe lowest surface roughness and highest surface
optimization method, which was developed by Dr. hardness in burnishing polymer materials. For this
Genichi Taguchi. It is a set of methodologies in purpose to be achieved, the relationships between
which the inherent variability of materials and parameters (i.e., burnishing depth, burnishing dpee
manufacturing processes are taken into accouhein t burnishing feed rate, roller width and type of
design stage (Ab Karim, M.Set al., 2011; Zhang, lubrication) and response factors (i.e., surface
J.Z., J.C. Chen and E.D. Kirby, 2007). In Taguchi roughness and surface hardness) are investigated to
optimization, multiple factors can be considered at distinguish the significant factors affecting mawd
once/at the same time. Moreover, nominal designsurface profile. The Taguchi optimization steps
points that are insensitive to variations in prdaturc comprise selecting the orthogonal array (OA)
and user environments are sought out to improveaccording to the number of controllable factors,
manufacturing vyield and product performance running experiments based on the OA, analyzing
reliability. By using Taguchi optimization data, identifying the optimum parameters and
techniques, industries are able to greatly reduceconducting confirmation runs with the optimal lesel
product development cycle time for design and of all parameters (Ab Karim, M.Set al., 2011;
production, therefore economizing and increasingHsiao, Y., Y. Tarng, and W. Huang, 2007; Sayulti,
profit (Ghani, J., I. Choudhury, and H. Hassan,£200 M., etal., 2012).

Normal Force *

Rotational
Motion

Burnishing
Roller

YWorkpiece &
— Valleys '*'? i

Fig. 1: Schematic of the burnishing process
MATERIALS AND METHODS the form cylindrical bars with 30mm diameter. The
bars were cut to be appropriately 200 mm long and
In this research polyoxymethylene (POM) then turned to 26mm diameter. Each specimen was
material is used. Typical applications for POM burnished and one region was left for measuring
include high performance engineering components,initial surface roughness. The mechanical propertie
such as small gear wheels, ball bearings, skiofthe polymer bars are tensile strength 70 Mpaldyi
bindings, fasteners, knife handles, lock systemd, a strength 67 Mpa , and modulus of elasticity 3.3 Gpa
model rocket launch buttons. This material is widel Table 1 indicate burnishing parameters used
utilized in the automotive and consumer electronics throughout the experimental work.
industries. The workpiece materials were received i

Table 1: Control factors and experimental conditions levels

Burnishing Parameters Levels (i )
A Burnishing Depth, mm 0.1 0.15 0.2
B Burnishing Speed, n (rpm) 110 245 490
C Burnishing Feed rate, f (mm/rev) 0.035 0.105 0.21
D Roller width, (mm) 1 3 5
E Lubrication mode Dry Fluid MQL
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a) Roller burnishing tool

b) Schematic of the burnishing process
Fig. 2: Experimental setup

Machines And Equipment: optimal process conditions within a limited number
The multi-roller type burnishing tool is made of of experimental runs, the Taguchi;I(3°) orthogonal
stainless steel and a detailed drawing of the [Bmol  array consisting of 27 data sets was selected to
with bearings and flat surfaces is shown in Fig)2( optimize the multiple performance characteristi€s o

while the experimental setup is shown in Fig. 2(b). surface roughness and hardnesghe standard

The roller is attached on the tool turret and prdss orthogonal array comprises 27 experiments with 5

against the material’s surface. control factors and 3 different experimental coiodit
This study was performed on a CNC turning levels for each factor. The 27 experiments were

machine (OKUMA LB15, 7.5Kw) with maximum carried out in random sequence to eliminate any

spindle speed of 4200 rpm. A roughness testerother invisible factors potentially contributing tioe

(mitutoyo SJ.201, 350pum wide measurement rangeresult.

ISO) took 5 surface roughness readings after

burnishing. Hardness was also measured by taking 5 RESULTS AND DISCUSSION

readings with the Vickers indenter michrohardness

tester (Model HMV Shimadzu, 98.07mN test force). The measured roughness and hardness values are

shown in Table 3. An example of measured surface

Design of Experiments: roughness is shown in Figure 3. The next step in
In full factorial design, the number of Taguchi optimization is data analysis, parameter

experimental runs exponentially increases with theoptimization and identifyingthe best significant

increasing number of factors as well as levels parametersData analysis was done by using two

(Procesu, U.G.-T.M.P., 2010). This requires more techniques: signal-to-noise (S/N)sponse and Pareto

extensive experimental cost and time. Therefore, toanalysis ofvariance (ANOVA).

compromise between these factors and identify
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Table 3: The Measured values of surface roughness andésgdn

Control_ Factors ang Measured values
Exp.no levels (i)
A B | C| D| E| Surface roughnes&a (um) Surface hardnessiy()

1 2 3 4 Avg | 1 2 3 4 5 Avg
1 i=1| 1] 1] 1] 1| 3.7 3.73 3.0p 346 3386 3472 151 1¢ 4.71] 15.6 16.5 15.58
2 I:1 111 1] 2| 282 283 29L 2798 291 2848 1§59 1%.96 15.7 15.9 15.8
3 I:1 1]11) 1] 3] 2120 211 214 204 208 2.098 26 24.85 2| 26.5 25.3 25.52
4 I:1 212 2| 1] 3.73 3.64 3.6 3.47 3.1 3.6B8 17|6 11.36.71| 17.1 17.04 17.14%
5 I= 21 2| 2| 2] 363 368 36B 341 3.67 3.644 209 20.21.5 19 17.7 19.84
6 I= 212 2| 3] 1214 114 11y 138 1.2 1.18 10]6 1150.21| 11.8 10.9 11
7 I= 3] 3| 3| 1] 269 304 288 243 276 284 114 11.22.3 111 9.5 11.2
8 I: 31 3| 3| 2] 244 2531 25p 2833 253 2506 1995 51P.11.5 11.75] 10 13.14
9 I: 313 3] 3] 337 339 33F 3133 3.09 377 152 15 414 14.6 16.65] 15.17
10 I: 1]2)] 3] 1] 364 369 36 343 3.67 3.65 144 13.23.5 15 14.65 14.25
11 I= 1|1 2] 3| 2| 213 243 23p 244 244 2366 133 13837 13.6 13.7 13.62
12 I= 11 2] 3| 3] 093 09¢ 1 0.86 0.9 0.9 18 181 11.78.9 17.9 17.936
13 I:2 213 1] 1] 35 35 35p 35 348 35018 17|5 11.26.81| 16.2 17.3 17
14 I:2 213 1] 2] 337 354 3.3 3492 261 3292 891 9p 4 8| 10 8.6 9.082
15 I:2 21 3| 1] 3] 09 084 094 084 O. 0.8B8 16|85 16.96.28| 16.35] 16.6§ 16.54]
16 I= 31| 2| 1] 267 261 27 2593 2.%8 2.6[18 17 17.0%.2581] 16.85| 17.1 16.85
17 I= 31| 2| 2] 114 117 11 135 1312 1142 1797 16.98.3 18.2 17.6 17.74
18 I= 31| 2| 3] 0922 083 09 046 0.89 0.984 141 14.45.1 13.6 15.7 14.58
19 I:3 1]1]3] 2] 1] 3622 364 35p 391 3. 3.592 1936 2(0.38.4 19.2 21 19.651
20 I:3 113 2] 2] 37 364 36p 347 371 348 12144 N2 02.21| 12.2 12.8 12.47
21 I:3 1]3)] 2] 3] 094 0.8f 09 089 0.8 0.9 1016 10.71.51| 10.2 9.87 10.574
22 I= 21 1] 3| 1] 204 203 190 232 208 2052 117 1$.93.6 12.9 13.2 12.98
23 I= 21 1] 3| 2] 198 191 195 19 1.97 1944 138 13.22.9 13.21] 12.8 13.18
24 I= 21 1] 3| 3] 2024 194 19p 2.1 1.92 1994 176 19.38.54| 17.3 17.6 17.46
25 I: 312 1] 1] 359 353 338 344 3%6 3.44 186 17.88.6 19 16.51 18.12
26 I:3 312 1] 2] 374 391 3.7p 3.9 3.73 3.808 1638 17.48.2 16.3 16.7 17.08
27 I: 312 1] 3] 1.2 1.14 1.4y 1.8 1.3 1.2B4 19|56 184.9®.77| 19.86] 19.5 19.52
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Measured Profile

Fig. 3: An example of measured surface roughness

SIN response analysis: TPM response values are calculated By, C;, D,
To calculate the S/N ratio, three methods

classified into the following main categories can b and E;. The TPM and S/N response values are
used, depending on whether the desired qualityplotted as shown in Figs. 4 and 5. The desired
characteristics are smaller-the-better, larger-the-"smaller-the-better” criterion implies that smaller
better or nominal-the-better. In this study, theatben surface roughness for TPM would be the ideal result
values are always ideal for surface roughness andvhile the largestS /N response would reflect the
higher \{alues for surfac_e hardness. The equatmms f gt response, resulting in the least noise (Pig. 4
calculating the S/N ratio of surface roughness andtpe preferred “larger-the-better” criterion implies

hardness, respectively, are as follows: that greater surface hardness for TPM would be the

5 1w 2

i —10log( ;Z ¥i )j (1) ideal result while the large&/N would reflect the
e 1 1 best response for surface hardness (Fig. 5).Based
n —10log( ?Ef:lﬁj (2) upon the smaller TPM and larger S/N ratio criteria

where {) is the test number from 1 to 2y;is (Fig. 4), the burnishing speedB{, 490rpm),

the individual measured surface roughness andpurnishing depth 4., 0.15mm), lowest burnishing
hardness in Table 3and n is the number of the teed 0.03 3 / I idth 3
individual measured responses, in this qase The  'ced rate €4, 0.035mm/rev), roller width{ ;, 3mm)

5/N value function is a performance measurementand E; M@L) type of lubrication are determined

parameter to develop processes insensitive to noisé¢o be the best choices for obtaining the lowedasar
factors. The higher the S/N ratio, the better #mult roughness.While from Fig. 5 andbased on the
for surfaceroughness and hardness is. criteria of higher TPM and higher S/N ratio with

Furthermore, the TPM and S/N response data areburnishing speed Bj, 110rpm), burnishing depth
calculated and summarized rable 5 for surface
roughness and hardness. As an example of TPM an&‘ql'
S/N response calculatiod; is the average of all 0.035mm/rev), roller width 4, 1mm) and Ej,
TPMand S/N values corresponding to the same leveliQL) are deemed the best choice for obtaining the
of input parameteri) under A in Table 3. In this  greatest surface hardness.

case, i) equal 1, 2 or 3. Similarly, th§/N and

0.1mm), lowest burnishing feed rate(

Table 5: TPM and SN response data

TPM response data
Surface roughness Surface hardness
Level of input
Parameters { | Ai Bi Ci Di Ei Ai Bi Ci Di Ei
)
Level 1 2.84 2.62 2.12 2.73 3.21 16 16.2 16.6 17.1 | 15.9
Level 2 214 247 2.66 2.37 2.54 15.3 14.9 16.5 515. 13.1
Level 3 2.52 242 2.72 2.39 1.49 15.7 15.9 13.9 314. 16.5
SN response data
Surface roughness Surface hardness
Level of input
Parameters { | Ai Bi Ci Di Ei Ai Bi Ci Di Ei
)
Level 1 -8.64 -7.33 -5.87 -7.88 -9.99 23.72 23.88 4.23 24.4 23.9
Level 2 -5.21 -6.93 -7.37 -6 -7.62 23.52 23.21 94.1 | 23.59 20.5
Level 3 -7.09 -6.67 -7.69 -7.06 -2.49 23.69 23.83 2.52 22.94 24
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Fig. 4: TPM and S/N response graphs for surface roughatetifferent control factors
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Analysis of variance (Pareto ANOVA): . In the same wayg S., Sp and 5;are
The analysis of variance using ANOVA is ca|culated. For each factor, the contribution fadso
another means of analyzing data for the optimiratio ca|culated as the percentage of summation of sguare
process.It is used to investigate which burnishing of gifferences to the total summation of the sgsiare

parameters  significantly affect the performance of gifferencesANOVA  analysis  additionally
characteristics. Pareto ANOVA for surface suggests that;‘-lz Ba Cl D: E.'E is the best

roughness is presented in Table 6 and for surface binati btain the | f
hardness in Table 7. Using the S/N response data{Jarameter combination to o tal_n t_ e lowest su_r ace
from Table 5, the summation of squares of roughnessandA;B, €; Dy Ejis ideal to obtain

differences (S) for each control factor is calcetat Maximum surface hardness.should be noted that
with the following equation: these results are similar to the ones obtainedgusin

S/N and TPM analysis.

Se= (A=A T (4 - 4) 1+ (4, - 4)

Table 6: Pareto ANOVA for surface roughness

3)

SIN S/N response data (dB)
Ai Bi Ci Di Ei
Control Factors () Burnishing Burnishing Burnishing feed| Roller Lubrication
depth Speed rate width
Level 1 -8.64 -7.33 -5.87 -7.88 -9.99
Level 2 -5.21 -6.93 -7.37 -6 -7.62
Level 3 -7.09 -6.67 -7.69 -7.06 -2.49
Total summation -20.94 -20.9 -20.93 -20.9 -20.1
Square of differences (S) 17.7018 0.66 5.6648 5.33 | 88.1838
Total summation of squares of
. _ 117.544
differences’t = SA+ 5B +5C
Contribution ratio (%) 15.05972 0.56 4.819302 4.53 75.02195
Cumulative contribution 75 75.5 80.34 84.9 100
Optimum combination A2 B3 C1 D2 E3
Pareto ANOVA
100 - 100
R
F 80 0 §
i) 5
7 g
.5 60 €0 £
E 10 40 (é == Contribution ratio
‘E = Commulative contribution
8 o 20 E
0 o §
83 A2 D2 C1 B3 ©
Factor
Overall optimum conditions for al A2B3C1D2E3
factors
Table 7: Pareto ANOVA for surface hardness
SIN S/IN response data (dB)
Ai Bi Gi Di Ei
Control Factors () Burnishing Burnishing Burnishing feed rate Roller Lubrication
depth Speed width
Level 1 23.72 23.88 24.23 24.4 23.9
Level 2 23.52 23.21 24.19 23.59 20.5
Level 3 23.69 23.83 22.5 22.94 24
Total summation 70.93 70.92 70.92 70.93 68.4
Square of differences (S) 0.07 0.836 5.851 3.2102 3.82
Total summation of squares of
. _ 33.7864
differences 5t = 54 + 5B + 5C
Contribution ratio (%) 0.207 2.474 17.32 9.5015 570.
Cumulative contribution 70.5 72.97 90.29 99.792 100
Optimum combination Al B1 Cl D1 E3
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Pareto ANOVA
100 - 100 =
e c
=
o & 80 =
= =]
¥ g
60 — 60 €
c ]
2 (&) N )
E 40 40 g Contribution ratio
E = Commulative contribution
S 20 20 3
O £
0 o 5
E3 c1 D1 B1 A1 °
Factor
Overall optimum conditions for all factor§ A1B1C1ES

Discussion: In the method of Taguchi optimization, the final
It is noted that burnishing improves the step isto conduct a verification test for the dation
material’'s surface quality due to the action ofsfita ~ of the suggestions using the optimal parameter
deformation on the material. combinations. The optimal combination of

In this work, both S/N ratio and ANOVA parameters for surface roughness and hardness
techniques delivered similar results. An investayat  corresponds to the orthogonal array of the
of surface roughness results indicated that lowerexperiment. It may be mentioned that, if the optima
surface roughness is achieved with medium combination of parameters as well as their levels
burnishing depth, maximum burnishing speed, lower match with one of the experiments in the OA
feed rate, 3mm roller width and MQL lubrication coincidently, in that case no confirmation test e
mode. This is on account of the fact that a higherrequired (Kamaruddinl, St al., 2004).
feed rate causes the surface to deteriorate, swa |
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