PET Image Reconstruction Using ISRA Technique

1P. Iniyatharasi, 2Dr. M. Pallikonda Rajasekaran, 3Mr. T. Arun Prasath and 4Dr.S. Kannan

1PG Scholar, Department of Electronics and Communication Engineering. Kalasalingam University, Virudhunagar, Tamil Nadu, India.
2Professor and head of the Department of Electronics and Communication Engineering. Kalasalingam University, Virudhunagar, Tamil Nadu, India.
3Assistant Professor, Department of Instrumentation and Control Engineering. Kalasalingam University, Virudhunagar, Tamil Nadu, India.
4Professor and head of the Department of Electrical and Electronics Engineering. Ramco Institute of Technology, Virudhunagar, Tamil Nadu, India.

A B S T R A C T

Background: An Image Space Reconstruction Algorithm (ISRA) in a adaptive hybrid space-transform domain is reputable. It offers a powerful machinery of combining local smoothness and non-local self-similarity instantaneously to ensure a more reliable and robust assessment. A new form of minimization purposeful for solving the image inverse problem is verbalized using ISRA under a regularization-based agenda. It is worth noticing that this displacement field is also used to introduce the bicubic upsampled image as an initialization. The attained high determination gradient is then regarded as a gradient check or an edge-preserving constraint to recreate the high-resolution image. The smooth edge familiarity is a smoothness restriction. The gradient magnitudes of GPP edge-directed are less strident than those attained through our scheme and the soft-cut technique. A strategy for high-fidelity image restoration by characterizing both local smoothness and non-local self-similarity of natural images in a unified statistical manner. Extensive experiments on image in painting image de-blurring and mixed Gaussian plus salt-and pepper noise removal applications. Analyzing images, to evaluate the basic factors that principal to their foundation is essentially a reverse problem. Since the observed image alone is usually not enough to uniquely determine these parameters, statistical models are frequently used to choose a likely solution from amongst those that are consistent with this observation. In this exposition, we use such arithmetical method to improve image replicas and consistent implication algorithms for two vision uses, and then discover image measurements in a new area. The advantages of convex optimization and low computational difficulty in regularization term. Universally positioned image blocks is abused in a more effective algebraic manner in 3D transform domain. Objective: The main objective of this paper is to do Image Reconstruction using ISRA Algorithm and to get better results in PSNR values.

Results: Using this ISRA Algorithm the Image which is reconstructed having better quality results with high quality in Images. Conclusion: Thus it is concluded that ISRA Algorithm is very useful for Image Reconstruction method which gives better Image quality values and less number of Iterations.

INTRODUCTION

Image reconstruction methods play vital role too many of the new applications of medical imaging. In this paper we start with coverage of a number of common ideas that occur in a wide area of problems, including reconstructing images from non-uniformly sampled data, reconstructed image from projection data, reconstruction from under sampled data, and automatically focusing images. There are at least two major areas in imaging science in which applied mathematics has a strong impact: image processing, and image reconstruction. In image processing the input is a (digital) image such as a photograph, while in image reconstruction the input is a set of data. Image processing techniques treat an image and apply numerical algorithms to either improve the given image or to extract different features of it.

The use of the positron emission tomography (PET) camera is to rotate around the patient in order to take the pictures of the patient of from different angles. These “images” learned from the nuclear drug camera are called projections. These projections are put together to obtain a patient’s image is called image reconstruction. There are two types of

Corresponding Author: P. Iniyatharasi, PG Scholar, Department of Electronics and Communication Engineering. Kalasalingam University, Virudhunagar, India.
Tel: +91 9894379481; E-mail: shalniyalakshmi@gmail.com
algorithm are used in image reconstruction they are analytical and iterative algorithms.

An algorithm is a mathematical procedure which is implemented on a computer. In medical imaging, image reconstruction is performed in a system with reconstruction algorithms. These measurements are reconstructed into cross-sectional images. Tomography image reconstruction forms an individual image of a patient body in edical imaging applications.

The iterative Image Space Restoration Algorithm (ISRA) was launched by Daube-Witherspoon and Muehllehner (1986) in the environment of image reconstruction from radiation computed tomography documents. Assume, in that perspective, there are M source pixels, the ith of which has radiation thickness f_i. Capacities g_j are perceived, where g_j is the amount of chances calculated in the jth of N pairs of indicator components. There are numbers h_{ij} such that h_{ij} is the probability that an event emitted from pixel i is received at detector j. The reconstruction difficult is that of concluding ideals for the f_i given the g_j and supercilious that the h_{ij} are known.

Distinct and constant forms of the ISRA appropriate for resolving a more common session of LININPOS complications (Linear Inverse problems with Positivity restrictions), which may or may not have probabilistic heritages. We use the terminology and representation of Vardi and Lee (1993), henceforth mentioned to as VL, and the main resolution of this paper is to display that it is direct to improve the ISRA, along the similar lines as VL’s work on the EM algorithm. Determines this for a amount of different cases. Discusses subjects of junction for the ISRA, and defines together evaluations with the EM algorithm and further simplifications.

Figure 1 describes the Noise/Blur is added to the input image. The estimation of the noise and the blur is then done. The estimated noises were then removed with the E-step and M-step implemented. Finally the performance of the process is measured using PSNR, MSE, RMSE and Reconstruction time.

MATERIALS AND METHODS

ISRA:

The iterative Image Space Reconstruction Algorithm (ISRA) for resolving Direct Reverse Problems with Progressive Restrain t_c. The development follows that for the EM algorithm the context of image reconstruction from emission computed tomography data. Assume, in that environment, there are M source pixels, the ith of which has radiation thickness f_i. Measurements g_j are detected, where g_j is the amount of chances calculated in the jth of N pairs of indicator components. There are numbers h_{ij} such that h_{ij} is the probability that an event emitted from pixel i is received at detector j. The reconstruction difficult is that of concluding ideals for the f_i given the g_j and supercilious that the h_{ij} are known. The iterative technique derivatived by Daube-Witherspoon and Muehllehner (1986) for reconstructing the f = {f_i} is as follows: modify the technique by selecting an f(o)> 0 (i.e. f(o)> 0 for all i), and then make a order {f^{(n)}} using the repetition.

\[
[\text{f}^{(n)}]_i = \frac{1}{f^{(n-1)}} \sum_{j=1}^{M} (\text{h}_{ij} \cdot \text{g}_j) i = 1, ..., M ; \quad n = 1, 2, ..., \infty
\]

(1)

This is the distinct form of the ISRA. Daube-Witherspoon and Muehllehner (1986) expressed the
ISRA as an different to the Poisson-based EM algorithm, for which the iterative period conforming to (1) is
\[f^{(n)}_i = \frac{\sum_{j=1}^{M} h_{ij} f_j^{(n-1)} g_j}{\sum_{j=1}^{M} h_{ij}^2}, \quad i = 1, \ldots, M \]
\[f_j^{(n)} = \frac{\sum_{i=1}^{M} h_{ij} f_i^{(n-1)} g_i}{\sum_{i=1}^{M} h_{ij}^2}, \quad j = 1, \ldots, N \]

It is vibrant, from (1), that the précis over j essential to be approved only once, at the commencement of the process. Daube-Whiterspons and Muehllehner (1986) presented no proper explanation for the algorithm, nor did they deliver any theoretical influences modifying its junction. They encouraged the ISRA heuristically by observing that, on the right hand side signifies a back projection of the facts \(\{g_j\} \) related with pixel i, conforming back-projection of the present ‘fitted prices’ for the \(\{g_j\} \). The ISRA is intended to principal finally to corresponding of these two arrays of back-projections.

The image space reconstruction algorithm (ISRA) has been exposed to be a non-negative smallest squares estimator, and was presented as an another iterative image reconstruction technique for positron emission tomography (PET) facts. The application of ISRA is direct: the part of the back projected digitized facts to that of the back projected estimated data is used to multiplicatively update the present image estimation. A modified weighted least squares impartial purpose to originate a more common method of the ISRA algorithm, which essentially accommodates weighting of the back projection. Basically by altering the excellent of back projection weighting issues at a given iteration, both the well-known ML-EM (maximum likelihood expectation maximization) algorithm as well as the standard ISRA, are achieved as different cases. ML-EM agrees to using the present assessment of the estimated documents as the weights for back projection, and ISRA relates to the event of unit weighting during back projection. Image space reconstruction algorithm (ISRA) is a new kind of method for ECT reconstruction. Unlike the ML-EM algorithm which maximizes likelihood function of Possion distribution, ISRA searches for the minimum non-negative mean square solution.

Related Work:

Karali et al. (2011) clearly states that the ISWLS shows similar performance to WLS during the first iterations but it has better noise manipulation. Finally, ordered subsets ISWLS (OS-ISWLS), the OS version of ISWLS, shows its best performance between the first six–nine iterations. Its behaviour seems to be a compromise between OS-ISR and OS-WLS. Benjamin Trémoulhéac et al. (2014) proves that dynamic MR Image reconstruction method from partial (k, t) space measurements is introduced that recovers and inherently separates the information in the dynamic scene. The reconstruction model is based on a low-rank plus sparse decomposition prior, that can be related to robust principal component analysis. Yu Chen et al. (2006) states that the Algebraic reconstruction method simultaneous ART (SART), three-dimensional (3-D) object from its projections. The algebraic methods have many advantages over the more popular Filtered Back projection approaches and have also recently been shown to perform well for 3-D cone-beam reconstruction.

Nirmal J. et al. (2013) clearly explain in his paper that vocal tract parameters and glottal excitations are characterized using Line Spectral Pairs (LSP) and pitch residual respectively. To evaluate the comparative performance of RBF and state of the art GMM based voice conversion system. Klaus Mueller and Roni Yagel (2000) states that the kinestatic charge detector (KCD) combined with the multilevel scheme algebraic reconstruction technique (MLS-AUT) for X-ray computer tomography (CT) reconstruction. The KCD provides excellent detective quantum efficiency and contrast resolution. Huaiqun Guan et al. (1999) propose in his paper that exploits the spatially variant detector response can reduce spatial resolution in PET. In iterative reconstruction methods, the detector can be modelled into the system response matrix (SRM). Unfortunately, the SRM for current PET scanners is very large. Here evaluating PET reconstruction using generalized natural pixel functions. With these pixel functions, the SRM becomes block-circulant for a ring-PET scanner, because of this there is substantially reducing the number of non-redundant elements in the SRM. John M. M. Anderson et al. (1997) states that, Unpenalized and penalized weighted least-squares (WLS) reconstruction methods for positron emission tomography (PET), where the weights are based on the covariance of a model error and depend on the unknown parameters’. Jeffrey A. Fessler (1994) states that the space-alternating generalized EM (SAGE) algorithms for image reconstruction, which update the parameters sequentially using a sequence of complete-data space. Here they introduce new hidden-data spaces that are less informative than the conventional complete-data space for Poisson data and that yield significant improvements in convergence rate. Ken Sauer and Charles Bouman (1993) states that the method for Bayesian reconstruction which relies on updates of single pixel values, rather than the entire image, at each iteration. The technique is similar to Gauss-Seidel (GS) iteration for the solution of differential equations on grids. Benjamin M. W. Tsui et al. (1991) states that there are two types of iterative reconstruction algorithms, namely, the maximum likelihood with expectation maximization (ML-EM) and the weighted least squares with conjugate gradient (WLS-CG) algorithms. Both algorithms are effective.
in compensating for the non-uniform attenuation distribution in the thorax region and the spatially variant detector response function of the imaging system. A neural network based image compression method is presented. Eliza Y. Du et al. (2013) clearly explain in his paper that the comprehensive approach for sclera image quality measure, which includes quality filter and quantitative quality assessment unit, feature evaluation unit, and score fusion unit. The results show that the combination score is highly correlated with the sclera recognition accuracy and can be used to improve and predict the performance of sclera recognition systems. Malczewski, Krzysztof, and Ryszard Stasiniski (2008) Magnetic Resonance Imaging (MRI) image reconstruction, based on the frequency domain Super-Resolution (SR) algorithm, is presented. Images can be obtained from sets of irregularly located frequency domain samples are combined into the high resolution MRI image. The SR reconstruction replaces the usually applied direct averaging of low-resolution images. Giovannetti et al. (2007) defines that the filter design method, compatible with SUPER algorithm, was investigated and tested on MR images. After coils sensitivities estimation, the data from the phased array elements was finally combined using this modified SUPER algorithm. Siva Nagi Reddy, k et al. (2012) states that the Neural networks offer the potential for providing a novel solution to the problem of data compression by its ability to generate internal data representation neurons which are intended to abstract and model some of the functionality of the human nervous system in an attempt to partially capture some of its computational strengths.

Peter J. Green (1990) defines that the method of reconstruction from SPECT data is proposed, which is build on the EM approach to maximum likelihood reconstruction from emission tomography data. This method can be illustrated by an application to data from brain scans.

Results:
The quality of reconstructed image can be measured by many parameters. The most commonly used image quality parameters are Mean Square error (MSE), peak signal to noise ratio error (PSNR), Root Mean Square error (RMSE) and Reconstruction time. If the PSNR value is large, then the reconstructed image quality will also increase.

A. Mean Square Error (MSE):
MSE is one of the important image quality parameter to find the better quality of reconstructed image.

B. Peak Signal to Noise Ratio (PSNR):
It is ratio between size of the input image to the square of Mean Square Error (MSE). If PSNR is extraordinary then the quality of reconstructed image is also high.

C. RMSE:
RMSE is just the square root value for Mean Square Error (MSE). Thus by finding this parameter, we can able to minimize the error in reconstructed image.

D. Reconstruction time:
The reconstructed time gives the value of elapsed time in seconds from the process of input image to reconstructed image.

The simulation outcomes for images for all the three algorithms are shown below. The images with better reconstruction presentation with the better MSE and high PSNR are included in the following figures.

The above figures (Fig. 2 to 5) show that the original and reconstructed images by using ISRA. All the input medical images given here are 256×256 image size. The parameters of the reconstructed image are depicted using different formules. By calculating MSE and PSNR values of the reconstructed image we can able to predict the quality of reconstructed image. Thus we concluded that when the iteration increases in ISRA algorithm the Image quality parameters is also increasing.

From the table (I-III) it is clear that when the number iteration increases the values of image quality parameters is also increases in ISRA algorithm.

From the fig 6 we can be able predict that the PSNR value is better in the final iteration
From the fig 7 we can be able predict that the MSE value is better in the final iteration
From the fig 8 we can be able predict that the RMSE value is better in the final iteration.

The above figure (Fig. 6 to 8) shows the comparison of image quality parameters such as MSE, RMSE and Reconstructed time by ISRA algorithm. All the input images given here are 256×256 image size. The parameters of the reconstructed image are depicted using different formules. By calculating MSE and PSNR values of the reconstructed image we can able to predict the quality of reconstructed image. Here, we can be able predict that the PSNR, MSE, RMSE values are better in the final iteration.
Fig. (2-5): signifies the input image and reconstructed image of ISRA algorithm.

Discussion:

Table I: Image quality parameters depicted for iteration 1 in ISRA algorithm.

<table>
<thead>
<tr>
<th>Input PET Images</th>
<th>PSNR</th>
<th>MSE</th>
<th>RMSE</th>
<th>Reconstruction Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET 1</td>
<td>69.53</td>
<td>76.72</td>
<td>74.53</td>
<td>53.67</td>
</tr>
<tr>
<td>PET 2</td>
<td>74.51</td>
<td>94.23</td>
<td>83.50</td>
<td>53.90</td>
</tr>
<tr>
<td>PET 3</td>
<td>74.46</td>
<td>34.65</td>
<td>79.45</td>
<td>53.87</td>
</tr>
<tr>
<td>PET 4</td>
<td>66.65</td>
<td>1.94</td>
<td>75.64</td>
<td>54.91</td>
</tr>
</tbody>
</table>

Table II: Image quality parameters depicted for iteration 2 in ISRA algorithm.

<table>
<thead>
<tr>
<th>Input PET Images</th>
<th>PSNR</th>
<th>MSE</th>
<th>RMSE</th>
<th>Reconstruction Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET 1</td>
<td>74.53</td>
<td>73.72</td>
<td>81.53</td>
<td>53.67</td>
</tr>
<tr>
<td>PET 2</td>
<td>83.51</td>
<td>91.23</td>
<td>93.50</td>
<td>53.90</td>
</tr>
<tr>
<td>PET 3</td>
<td>79.46</td>
<td>31.65</td>
<td>89.45</td>
<td>53.87</td>
</tr>
<tr>
<td>PET 4</td>
<td>75.65</td>
<td>4.94</td>
<td>84.64</td>
<td>54.91</td>
</tr>
</tbody>
</table>

Table III: Image quality parameters depicted for iteration 3 in ISRA algorithm.

<table>
<thead>
<tr>
<th>Input PET Images</th>
<th>PSNR</th>
<th>MSE</th>
<th>RMSE</th>
<th>Reconstruction Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET 1</td>
<td>81.53</td>
<td>70.72</td>
<td>91.53</td>
<td>53.67</td>
</tr>
<tr>
<td>PET 2</td>
<td>93.51</td>
<td>88.23</td>
<td>101.50</td>
<td>53.90</td>
</tr>
<tr>
<td>PET 3</td>
<td>89.46</td>
<td>28.65</td>
<td>99.45</td>
<td>53.87</td>
</tr>
<tr>
<td>PET 4</td>
<td>84.65</td>
<td>7.94</td>
<td>93.64</td>
<td>54.91</td>
</tr>
</tbody>
</table>

Fig. 6: PSNR values for all three iteration in ISRA algorithm.
Conclusion:

This previous method slander out image details and cannot deal well with fine structures. The image possessions of nonlocal self-similarity should be regarded as by a more powerful manner, rather than by the traditional slanted graph. A novel strategy for high-fidelity image restoration by characterizing both local smoothness and nonlocal self-similarity of natural images in a unified statistical manner. Extensive experiments on image in painting, image deblurring, and mixed Gaussian plus salt-and pepper noise removal applications. The advantages of convex optimization and low computational difficulty in regularization term. Universally positioned image blocks is abused in a more effective algebraic manner in 3D transform domain. Thus we concluded that when the iteration increases in ISRA algorithm the Image quality parameters is also increasing.

REFERENCES

