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 Odor gas tracking is a capability exhibited by animals but sorely needed by humans for 

applications in areas such as security, search and rescue and industrial monitoring; 
amongst others. The research documented in this document proposes a new algorithm 

based on Braitenberg vehicle that mimics the strategy of animals and insects for odor 

tracking. Simulation results show that the proposed algorithm was able to independently 
track an odor plume to its source, comparable to other prominent algorithms. 

Deployment of a multirobot system using the same algorithm shows an improvement in 

the completion of the plume tracking task in terms of completion time. Furthermore, 
comparisons with other algorithm have shown that the proposed algorithm performs 

better than the typical single and multi-robot strategies. 
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INTRODUCTION 
 

Animals with seemingly low intelligence have exhibited the ability to track odor for hunting, foraging and 

mating (Fraenkel and Gunn 1961). In an unknown environment, the task is harder to complete as the odor 

dispersal is affected heavily by the unpredictable airflow. However, these simple beings have the capability to 

address the problem with minimal effort and maintain continuity of their species. Such examples of odor source 

localization by natural systems have been going on for thousands of years. Amazingly, these simplistic solutions 

have prevailed even in a highly unpredictable and dynamic environment. As there are many potential applications 

for odor source localization, mimicking these strategies has been the subject of interest of researchers.  

Currently, interest in odor localization is increasing due to the growing need for environmental monitoring, 

security, surveillance, industrial monitoring, agricultural, humanitarian demining and search and rescue (A. 

Lilienthal, Loutfi, & Duckett, 2006). The common practice is by using handheld devices or trained dogs for gas 

source localization. Unfortunately, these methods require trained personnel which are prone to error, fatigue and 

needs supervision. Successful implementation of source localization on mobile robots can be desirable to increase 

success and reliability in the said applications. Dependency on trained dogs for drug tracking, for example, can be 

eliminated. Furthermore, advancements in swarm robotics allow for simpler strategies for solving complex 

problems. 

 

II. Related Work: 
Inspired by biological systems which has successfully addressed this problem (Byers, 1996; Dusenbery, 

1989; J. S. Kennedy & Marsh, 1974; Rieser, Yonas, & Wikner, 1976; Willis, 2008); much effort has been directed 

to replicate and enhance the behaviors of these beings in the laboratory. Previous researches has focused on single 

robot and multi-robot application, while looking at ways of modeling an odor plume with the smallest amount of 

data, to provide useful information for robot navigation. As biological systems tend to be reactive, most research 

has been focusing on this type of system (Kowadlo & Russell, 2008).  

However, the current technology is heavily outperformed by the natural counterparts (Hernandez Bennetts, 

Lilienthal, Neumann, & Trincavelli, 2012). For example, chemoreceptors on animals detect chemicals faster and 

are tuned to the type and concentration and odor of interest. Furthermore, wildlife at times exhibits a level of 

intelligence in decision making that sometimes can only be described as experience and instinct (Ishida, 

Nakamoto, Moriizumi, Kikas, & Janata, 2001; A. Lilienthal, Reimann, & Zell, 2003). Hence, several 
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modifications have been made to bio-inspired systems so that it emulates strategies exhibited by natural systems 

rather than directly mimicking it. 

 

A. Single Robot Algorithm: 

In general, single robot odor localization algorithm can be classed into four groups, namely, chemotaxis, 

anemotaxis, vision driven and infotaxis. Chemotaxis is a gradient driven motion; in this case, based on the 

concentration of the target odor (Atema, 1996). Wind guided search is classed as anemotaxis (J. S. Kennedy & 

Marsh, 1974). This class of search strategy is based on the assumption that odor sources must lie upwind from a 

detected odor. As such, entities that use this strategy tend to move upwind to find an odor source. Vision driven 

search strategies use vision based devices in order to locate odor sources (Ishida, Tanaka, Taniguchi, & 

Moriizumi, 2004). Gas mapping is in general the most complex, as it generally uses collected data to estimate the 

likely position of the source (Ramirez, Lopez, Rodriguez, de Albornoz, & De Pieri, 2011). 

Chemotaxis strategies include E. Coli algorithm, Biased Random Walk (BRW) and some Braitenberg based 

algorithm are strictly chemotactic. Algorithms mimicking them and its enhancements have been proposed by 

previous researches (Harvey, Tien-Fu, & Keller, 2008a; Ishida et al., 1995; A. J. Lilienthal & Duckett, 2003; 

Loutfi & Coradeschi, 2002; Marques, Nunes, & de Almeida, 2002; R. Andrew Russell, Bab-Hadiashar, Shepherd, 

& Wallace, 2003; R. A. Russell, Thiel, Deveza, & Mackay-Sim, 1995; Sandini, Lucarini, & Varoli, 1993). This 

type of algorithm can be identified easily as during plume traversal, its motion tends upwards a positive gradient 

of chemical concentration. The robot’s behavior is not directly affected by airflow or by any other parameters. 

Anemotaxis based strategies such as silkworm moth algorithm, dung beetle algorithm (zigzag), casting, 

surge-cast, spiral-surge and their enhancements have been proposed and discussed. These algorithms usually 

incorporate some chemical sensing to detect odor plumes; but their plume traversal movement is determined by 

the direction of the wind. The input from gas sensors are not used directly to guide the robot to the source. The 

general tendency for this set of algorithm is to move upwind from where odor is detected. Simulation runs and real 

robot implementations have been presented by many researchers (Harvey, Tien-Fu, & Keller, 2008b; A. T. Hayes, 

Martinoli, & Goodman, 2001; Adam T. Hayes, Martinoli, & Goodman, 2003; Ishida, et al., 1995; Ishida, Kagawa, 

Nakamoto, & Moriizumi, 1996; Ishida, Suetsugu, Nakamoto, & Moriizumi, 1994; Thomas Lochmatter & 

Alcherio Martinoli, 2009; Marques, et al., 2002; Nurzaman, Matsumoto, Nakamura, Koizumi, & Ishiguro, 2009; 

R. Andrew Russell, et al., 2003; R. A. Russell, et al., 1995). 

New research has proposed vision to further aid odor localization(Ishida, et al., 2004; Ishida, Ushiku, 

Toyama, Taniguchi, & Moriizumi, 2005; Jianhua, Xiaojun, Lingyu, & Minglu, 2010; Ping, Qing-Hao, & Ming, 

2010; Wang, Meng, & Zeng, 2012). The researches publish methods that use visual cues for determining the 

possible odor source and verify it using chemical sensors. 

Mapping based methods uses probability and information theory to estimate gas sources by building 

concentration maps based on different models (Farah & Duckett, 2002; Ishida, et al., 2001; Kazadi, Goodman, 

Tsikata, Green, & Lin, 2000; Ramirez, et al., 2011). This type of algorithm usually requires relatively high 

amounts of processing power or memory on the target robot platform. 

 

B. Multi Robot Algorithm: 

In order to further optimize the solution, swarm robotics has been introduced. Although implementing swarm 

robots on a problem adds hardware complexities such as communication dependencies and task management 

(Cao, Fukunaga, Kahng, & Meng, 1995) it is capable of solving complex problems using simpler algorithms 

(Dudek, Jenkin, Milios, & Wilkes, 1993). The basic concept of swarm robots is generally a multi-robot system 

that interacts with each other in order to achieve a set of objectives(Dudek, Jenkin, Milios, & Wilkes, 1996). By 

using multi-robot systems, the search space for each robot can be reduced, more data can be collected faster, more 

accurate decisions can be made and objectives may be fulfilled by collective behavior.  

For odor localization, algorithms that have been implemented to date are either based on single robot 

algorithms or swarm intelligence theories. Spiral-surge (Hayes, Martinoli, & Goodman, 2001, 2002; Marjovi, 

Nunes, Sousa, Faria, & Marques, 2010) and infotaxis has been implemented on a real robot swarm successfully to 

locate an odor source. Examples of swarm intelligence that have been implemented are Ant Colony Algorithm 

(Yuhua, Dehan, & Weihai, 2009)and Particle Swarm Optimization (Ferri et al., 2007; Marques, Nunes, & 

Almeida, 2006). 

More comprehensive reviews of methods have been presented in previous reviews (Ishida, Wada, & 

Matsukura, 2012; Kowadlo & Russell, 2008). They have different ways of presenting the previous researches 

done in this field, however, it does not contradict with this interpretation. The differences between all the reviews 

are due to diverse views on recent researches and the different ways each author presents their findings. 

 

III. Problem Statement: 
Current methods of odor plume tracing can be inefficient as they do not move directly towards the source of 

the odor. Bio-inspired algorithms for single robots, for example generally require robots to move in a direction 
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which is thought to be the direction of a gas source and correct its movement when it finally leaves the plume. In 

contrast, previous works on the Braitenberg algorithm shows that it has the capability to navigate directly towards 

the source of the plume by constantly correcting the robot path(Mamduh et al., 2013). 

Currently, swarm intelligence algorithms that have been implemented have limitations if any member of the 

robot is separated from the swarm. For example, in PSO based algorithms, an individual element cannot function 

without the other elements to compare its fitness score. Therefore, the single element may reduce to a single robot 

doing a local search or a BRW, depending on its implementation. By using an algorithm that can be used in either 

single or multi-robot configuration can solve this issue; hence the Braitenberg algorithm. 

 

IV. Bio-Inspired Odor Tracking Algorithms: 

A. Casting: 

The same casting algorithm as Li et al. and Lochmatter et al. presented was implemented (Li, Farrell &Card, 

2001; Lochmatter, Raemy, Matthey, Indra, & Martinoli, 2008).A robot in the plume moves upwind at an angle 

until it detects that it is out of the plume after a certain distance or time. The robot then turns and moves 

perpendicular to the wind until it reacquires the plume. Once in the plume, the robot moves upwind at an angle 

again. The pseudo-code of its implementation is presented in List. 1. 

 
List. 1: Pseudo-code for Casting Algorithm 

 

reset(); 
while(!found_souce) 

 
if (inside_plume) 

state_upwind_surge(); 

 
elseif(!inside_plume) 

find_cast_direction(); 

state_crosswind_find(); 
endif; 

 

endwhile; 
 

 

B. Surge-Spiral: 

The implemented surge-spiral algorithm is similar to the one proposed by Hayes et al. and Lochmatter et 

al.(A. T. Hayes, Martinoli, & Goodman, 2002; T. Lochmatter & A. Martinoli, 2009). However the algorithm was 

modified so that it has a single spiral gap parameter. Unlike casting, the robot moves straight upwind in the plume 

until it loses the plume after a certain distance or time. Once it loses the plume, the robot tries to reacquire the 

plume by moving in a spiral motion with a gap size. The robot will resume upwind surge when it finds the plume 

again. The pseudo-code for the implementation of the surge-spiral algorithm is displayed in List. 2. 

 
List. 2: Pseudo-code for Surge-Spiral Algorithm 

 
reset(); 

while(!found_souce) 

 
if (inside_plume) 

state_upwind_surge(); 

 
elseif(!inside_plume) 

state_spiral_find(); 

endif; 
 

endwhile; 

 

 

C. Surge-Cast: 

The surge-cast algorithm is a modification from the surge-spiral algorithm as proposed by Lochmatter et 

al.(T. Lochmatter & A. Martinoli, 2009). Instead of spiraling to find the lost plume, the robot commits to a 

crosswind movement. Similar to surge-spiral algorithm, the robot moves upwind until it loses the odor plume. 

However, once it loses the plume, it moves perpendicular to the wind for a set distance. If it does not find the 

plume, turns back and moves perpendicular to the wind again. To decide which way to cast, wind direction 

measurements is taken to estimate which side the robot left the plume. The implementation of the algorithm is 

shown in List. 3. 
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List. 3: Pseudo-code for Surge-Spiral Algorithm 

 

reset(); 

while(!found_souce) 

 
if (inside_plume) 

state_upwind_surge(); 

 
elseif(!inside_plume) 

find_cast_direction(); 

state_crosswind_find(); 
endif; 

 

endwhile; 
 

 

D. Particle Swarm Optomization: 

PSO algorithm is a technique originally proposed by Kennedy and Eberhart (J. Kennedy & Eberhart, 1995). It 

is derived from the behavior of flocking animals while searching for food such as birds and fishes. In this research, 

the algorithm that was implemented is similar to the one implemented by Marques et al. (Marques, Nunes, & 

Almeida, 2006) and modified as simulated by Ferri et al.(Ferri et al., 2007). 

In the original formulation, it is assumed that there exists of a group of searching elements (called particles) 

that traverses across a D-dimensional space based on these equations: 

 

))(())(()1()( 21 txxtxxtvtv igbestipbestiii     

)()1()( tvtxtx iii   

        (1) 

        (2) 

where vi and xi represent the ith particle’s velocity and position vectors respectively; xpbest i and xgbest represent 

the particle’s previous best value and global best value respectively; φ is a gain factor that controls the magnitude 

of the velocity; and ρ1 and ρ2 are two positive random values (Marques, et al., 2006). The pseudo-code that 

describes the selection of the best locations is listed in List. 4. 

 
List. 4: Pseudo-code for PSO Algorithm 

 

reset() 

while(!found_source) 
if (current_concentration > previous_concentration) 

store_current_location(); 

store_current_concentration(); 
endif; 

 

update_global_data(); 
find_best_global_position(); 

 

xi = update_vector() ; 
 

move_to(xi); 

endwhile; 

 

A reactive obstacle avoidance method has also been implemented to avoid collision between robots and other 

obstacles. This method does not have any effect to the decision of the particle’s target positions and only affects 

the path it takes to move to it. 

 

E. Braitenberg Swarm Vehicles:  

The Braitenberg vehicle is essentially a sensor-motor coupled architecture based vehicle as proposed by 

Valentino Braitenberg in his book Vehicles: Experiments in Synthetic Psychology (Braitenberg, 1986). The 

vehicles described in the book are in general reactive towards instantaneously sensed properties of their 

environments. This type of behavior can be observed in odor localization in nature as can be seen in the silkworm 

moth, the dung beetle and others(Byers, 1996; J. S. Kennedy & Marsh, 1974). Such minimalistic approach does 

not require long term memory thus relieving the dedication of memory resources and thus, hardware 

requirements. 
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Fig. 1: Braitenberg vehicle Type 3c (Braitenberg, 1986). 

 

Braitenberg introduces a vehicle with multiple sensors coupled to two motors, which is the type that was 

implemented in this research (shown in Fig. 1). This type of vehicle allows multi-sensor approach as well as 

provides the potential to customize sensor interfaces.  

For the odor localization problem, gas sensors and wind sensors were chosen to dictate the movement of the 

robot. The type of configuration that was chosen was: 

1) Gas sensors – Love 

2) Wind sensors – Aggressive 

3) Proximity, P – Explorer 

4) Gas Attraction, A – Explorer 

Consequently, the equations implemented to control the movement of the robot are: 

 

lalplwrgavr AkPkWkGkvv   

rarprwlgavl AkPkWkGkvv   

        (3) 

        (4) 

where, vav is the average velocity, G is the normalized gas sensor reading, W is the normalized wind sensor 

reading, P is the repulsion between the robots,  A is the attraction between the robots when an odor trace is 

detected by a robot, and  , kg, kw, kpand ka are factoring coefficients.  

The wind sensor reading, W, is normalized by dividing it with the magnitude of the wind detected. Gas sensor 

readings are, on the other hand, normalized by using the method described by Lilienthal et al. as in (5) (A. J. 

Lilienthal & Duckett, 2003). 

 

)/()( minmaxmin iiiii rrrrG          (5) 

 

where, riis the current sensor reading, rmin, iis the minimum sensor reading at iteration i and rmax, iis the 

minimum sensor reading at iteration i. The minimum, rmin, i, and maximum, rmax, i, sensor reading is updated 

dynamically in each iteration.  

Instead of a typical “Mexican Hat” approach as described in previous literature (Ferri, et al., 2007) which is 

computationally heavy, a simpler version for differential wheel robots is applied based on the Braitenberg 

architecture. It is assumed that the robot can estimate the position of other robots relative to it, and based on that 

information, the value of the terms P and A is calculated and a response is created based on the information 

gathered. The mathematical description of the sensor response is listed below: 

 

)/()(1
2

max

2  ddP   

 /GA  

        (6) 

        (7) 

where, d is the distance of the robot from the other robot, θ is the angle of the other robot from the forward 

axis of the robot. 

 

V. Simulation Environment: 
Simulation was run in Webots to test possible algorithms for plume tracking. It reduces development time and 

hardware dependency. The problem is simplified significantly as issues such as communication, sensor mounting 

and other hardware requirements can be ignored or simulated. Components that were simulated are the odor 

plume, wind, gas sensor, wind sensor, the robot, the arena, and the odor source. The following subsections will 

discuss about the elements that were simulated. 
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A. The Robot: 
The robot used in the simulation is a typical differential wheel (E-Puck (Bonani et al., 2009)) robot mounted 

with two gas sensors in front and an anemometer on top. The position of the gas and wind sensors (in meters) are 

with respect to the robot’s axis are: 

 

Left gas sensor  : [ 0.04 0.06 0.04 ] 

Right gas sensor   : [ 0.04 0.06 -0.04 ] 

Wind sensor   : [ 0.00 0.06 0.00 ] 

 

The differential wheel robot has an array of IR sensors for obstacle avoidance. As the real robot has Zigbee 

connectivity, communication is assumed to be instantaneous and reliable. 

 

B. Test Environment: 
The test area was in the simulation is an 8m by 4m arena with walls on all four sides so that it replicates the 

real test area where future developments will be done. There are no obstacles in the arena. Success is assumed as 

soon as a robot comes into 0.3m radius of the odor source. 

 

C. Odor Plume Physics: 
The odor plume is simulated based on Ferrell’s model as it needs relatively low computation. Ferrell’s plume 

model is based on the assumption that odor plumes are similar to the meandering profile of multiple filamentous 

entities (Ishida, et al., 2001). The meandering is random and follows the Gaussian distribution. This is based on 

previous reports on odor plume in laminar condition in which the average distribution of an odor plume fits the 

Gaussian distribution (Crimaldi, Wiley, & Koseff, 2002). Each filament has higher concentration in the center and 

is lower at the edges. Diffusion equation is used to describe the concentration in each filament.  

Wind was also simulated. The wind sensor is given noise which is distributed according to Gaussian 

distribution. So, in a nutshell, the implemented model incorporates Advection-Diffusion with Farrell’s 

assumption to model an odor plume in laminar flow. 

 

VI. Results and Discussions: 
In the previous research, the proposed Braitenberg algorithm was tested and found to be a feasible plume 

tracking strategy in single robot and multi-robot systems (Mamduh et al., 2013).This research compares the 

algorithm with other existing algorithms to gauge its performance. The optimum settings of the proposed 

algorithm will be used, and compared with casting, surge-spiral, surge-cast and PSO. The time for successful 

plume tracking and path efficiency will be analyzed. 

 

A. Time for Successful Plume Tracking: 
The time needed for successful plume tracking is useful to gauge the efficiency and the reliability of the 

analyzed algorithm. Table 1 summarizes the average times, tavsuccess, and standard deviation, σsuccess, for successful 

plume tracking of different single robot algorithms. 
 

Table 1: Comparison of Average Successful Completion Time for Plume Tracking Task for Single-Robot Algorithms 

Algorithm Average Time, tav success, (s) Standard Deviation, σsuccess,  (s) 

Casting 973.35 81.18 

Surge-spiral 954.70 245.52 

Surge-cast 856.97 167.86 

Braitenberg 586.60 28.51 

 

The results are similar to the findings of the previous research by Lochmatter et al. (T. Lochmatter & A. 

Martinoli, 2009; Lochmatter, et al., 2008). The recorded times are slower compared to the previous work as the 

robot used in their research is a Khepera III which is bigger and faster. 

The worst performing algorithm is the casting algorithm, taking on average 973 seconds to finish the task. 

The zigzagging motion up the wind appears to be inefficient as the robot has to travel from one side of the plume 

to the other while traversing up the plume. The standard deviation however is relatively lower as it is less likely to 

be unable to reacquire the plume as it knows which side of the plume it is at.  

Surge-spiral algorithm performs slightly better in terms of time it needs to complete the plume tracking task. 

The relatively long time maybe due to the fact that the robot has to traverse in a spiral path to reacquire the plume; 

which is highly inefficient. Furthermore, the standard deviation is worst amongst the four algorithms. The motion, 

although reliable in reacquiring the plume, is inefficient and depending on chance, may require an unpredictable 

amount of time to reacquire the plume. Nonetheless, under non-laminar conditions, the spiraling motion is 

expected to be a reliable strategy to reacquire the plume. 
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The surge-cast algorithm performs better than the other algorithms. However, it still lags by 270 seconds 

from the Braitenberg algorithm. The casting motion; when trying to find the plume even though more efficient 

than the spiraling motion, still causes the standard deviation to be relatively high. 

The slower times of the other algorithms may be attributed to a few factors. The first is the relatively 

inefficient path the casting and surge-spiral algorithms take. As the algorithms move indirectly to the source of the 

plume, the robot traverses in a much longer path compared to the Braitenberg algorithm. The second factor is due 

to the fact that the rival algorithm requires the robot to turn at a spot without progressing further up the plume. The 

time spent in turning causes the total time needed to complete the task increase, as well as increasing the standard 

deviation. 

 
Table 2: Comparison of Average Successful Completion Time for Plume Tracking Task for Multi-Robot Algorithms 

Algorithm Average Time, tav success, (s) 
Standard Deviation, σsuccess,  

(s) 
RSD (%) 

PSO 699.93 69.58 9.94 

Non-Cooperative 290.18 28.31 10.25 

Cooperative 299.04 17.01 5.69 

 

Table 2 summarizes the performances of PSO and the two variants of swarm Braitenberg algorithm. Both 

Braitenberg configurations outperform PSO in terms of average time needed for successful plume tracking, , 

tavsuccess, and standard deviation, σsuccess. The indirect path used by the entities of the PSO is a factor for its relatively 

slow average time. The total distance traversed by the entities is bigger than the path traversed by the both 

Braitenberg algorithm. As the velocities of the robots are set to be the same, PSO takes longer to finish the plume 

traversing path. 

Considering the Relative Standard Deviation (RSD) of the three strategies, PSO and non-cooperative 

performs similarly. The cooperative Braitenberg algorithm has a smaller RSD again reflecting its consistency in 

terms of tracking the odor plume. 

 

B. Path Efficiency: 
 

Table 3: Comparison of Average Distance Travelled for Plume Tracking Task for Single-Robot Algorithms 

Algorithm 
Average Distance 
Travelled, dav (m) 

Standard Deviation, σd,  
(m) 

Average Time, 
tav success, (s) 

Standard Deviation, 
σsuccess,  (s) 

Casting 10.51 1.12 973.35 81.18 

Surge-spiral 11.30 1.22 954.70 245.52 

Surge-cast 8.81 0.69 856.97 167.86 

Single Robot Braitenberg 9.70 0.75 586.60 28.51 

 

Table 3 summarizes the average distances travelled by a single robot for all algorithms tested. From the 

results, it can be concluded that surge-cast on average takes the shortest path towards the odor source. As the robot 

executing this algorithm generally moves near the border of the plume in the upwind direction, which is, in 

geometric terms, the shortest path towards the source of a plume in laminar condition. Second best is the single 

robot Braitenberg algorithm. Although the robot moves straight upwind towards the plume source, this algorithm 

coerces the robot to move to the middle of the plume; explaining the extra distance. Casting and surge-spiral 

performs worse than the two said algorithms, as they take an indirect path upwind; zigzagging and spiraling 

respectively.  

A more detailed examination of the results reveal that the average distance travelled does not agree with the 

average time for task completion. Even with the same average velocities, the distance and time does not seem to be 

correlated. The difference of approximately 1m cannot be the cause of the 270s difference between Surge-Cast 

and Braitenberg. This issue can be explained by looking at the strategy that is employed by the algorithms. The 

Braitenberg algorithm, unlike the other three single robot algorithms, constantly moves. The other algorithms 

require robots to turn at a spot and move in a predetermined path when it loses the plume. As such, time is wasted 

in these maneuvers, explaining why the Braitenberg algorithm can finish the task faster. 

Considering the multi-robot algorithms as presented in Table 4, the longer time of PSO can be explained 

simply by the average distance travelled. PSO entities travel more than twice the distance of both multi-robot 

Braitenberg algorithms, and as such reflected in the average time, where it also takes more than twice the time to 

complete the task. Both multi-robot Braitenberg algorithms have similar average distances and time thus, 

performance is almost the same. However, more work needs to be done to explore the performance factors of both 

configurations, perhaps in the differing numbers of robots or communication reliability. 

To summarize, the Braitenberg algorithm, although may not traverse the shortest path to the source, still 

converges the fastest. The shortest path was traversed by the surge-cast algorithm. 
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Table 4: Comparison of Average Distance Travelled for Plume Tracking Task for Multi-Robot Algorithms 

Algorithm 
Average Distance 

Travelled, dav (m) 

Standard Deviation, σd,  

(m) 

Average Time, 

tav success, (s) 

Standard Deviation, 

σsuccess,  (s) 

PSO 21.72 2.41 699.93 69.58 

Non-Cooperative 

Braitenberg 
10.78 1.06 290.18 28.31 

Cooperative Braitenberg 10.56 0.98 299.04 17.01 

 

Conclusions: 

In general, the proposed algorithm was able to finish the plume tracking faster than the other algorithms 

compared. Furthermore, the reliability of the hybrid chemotaxis and anemotaxis configuration also outperforms 

the other algorithms. However, the path traversed by the surge-cast algorithm is shorter than the proposed 

algorithm even though the time for it to complete the task is longer. The longer average time can be attributed to 

the behavior of the surge-cast algorithm that requires it to spend some time in a stationary turn while switching 

between surging and casting. 
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