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 In this paper, we propose a Q-learning method with multiplex Q-tables. In the method, an 

agent has some Q-tables. The agent evaluates all the Q-tables based on information 

entropy at each step, and selects an action by the best Q-table. In some of ordinary 
methods, an agent has plural Q-tables, but doesn't apply plural Q-tables for the same task, 

while comparing one Q-table with others at each step. We confirmed in experimental 

simulations that the proposed learning was earlier converging on a better policy than 

ordinary simple methods. 
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INTRODUCTION 
 

Animals including human being can get a food of reward in an efficient way, but is not taught how to act 

for getting the reward by others. An animal recognizes environmental changes to be caused by the own actions 

and learns appropriate actions through trial and error. Reinforcement learning is modeling of the animal learning 

process. Reinforcement learning is easy to apply to a robot action learning, since a robot designer only sets the 

rewards at ultimate goals. Reinforcement learning has an advantage that the designing is simple, but has a 

disadvantage that the learning needs many trial and errors. The trial frequency increases exponentially by 

increasing the states to represent uncertain environment in detail, such as actual environment. 

In an ordinary Q-learning method, an agent has only one Q-table a policy, which has some Q-values. A 

policy is a function to represent which action should be selected at each state. Each Q-value is the evaluating 

value of a state-action pair. Each Q-value is updated by the value of the next state leaded by the action. The 

value of a state is decided by the highest value among all the Q-values related to the state. If an agent acquires a 

good policy, it is same that it finds a good way to reach the goal. In general, a rougher Q-table is converging 

earlier in learning, but the agent cannot learn an optimal policy. Since a rough Q-table cannot represent exactly 

the learned environment by too rough states. An agent with a more detailed Q-table can learn an optimal policy, 

but it is converging more slowly in learning, since a detailed Q-table has much inexperienced state-action pairs 

early in learning, increasing the number of inexperienced pair’s cause’s exponentially slower learning. 

However, none knows which Q-table has optimal size for an environment before the trials. 

As methods to let a learning be more efficient, a multi-layered reinforcement learning (Yasutake et al., 

2003; Eiji and Kenji, 2004) split and arranged hierarchically learning spaces. But it needs a priori knowledge for 

the learning spaces to switch from one to another. The method (Tomoli et al., 2003) adaptively segments states 

to prevent increasing the states in a robot task. But the result of segments depends on initial segments.  

In contrast, we proposed the learning method (Osamu et al., 2006) to decrease the trial frequency prepared 

not only a whole learning space but a part learning space for an environment, that are applied at the same time, 

without a priori knowledge. However the learning speed depends on selecting a part learning space, the result of 

learning is independent of selecting a part learning space. In this paper, we extend the proposed method to 

multiplexing learning spaces. 

 

Proposed Method: 

Here, we describe the proposed Q-learning method with multiplex Q-tables. It applies multiplex Q-tables 

that represent the same learned environment from in detail to roughly, relatively, at the same learning step. It 

selects the best Q-table based on information entropy among all the Q-tables at the state of each step, and 

updates the Q-table based on the result. We consider Q-table to be more effective, that has lower information 
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entropy at a state, since the efficiency of a Q-table at a state is indicated by the difference of Q-values at a state 

in a Q-table. Some of ordinary Q-learning methods have plural Q-tables, but they don't apply plural Q-tables for 

the same task, while comparing one Q-table with others at each step. 

We design the proposed method to compensate that disadvantage with this advantage and this disadvantage 

with that advantage, each other. Applying multiplex Q-tables means that the environment is observed from 

multi-viewpoint. In other words, the proposed method evaluates a state from multi-viewpoints at the same step, 

and applies viewpoints in order of high probability of success. We show the learning algorithm for the multiplex 

learning spaces in Fig. 1. 

 

 
Fig. 1: NS chart of the reinforcement learning with multiplex Q-tables. 

 

1. Init Q-tables: 

A learning agent initializes all the multi-Q-tables to set each Q-value to an init value. 

 

2. Set goal: 

The designer decides state of goal where the agent gets the reward. 

 

3. Select Q-table: 

The agent selects the Q-table with lowest information entropy H(s), among all the Q-tables at states, that are 

calculated by Eq. (1). 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  𝑝 𝑎|𝑠𝑘 𝑎∈𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑙𝑜𝑔2
1

𝑝 𝑎|𝑠𝑘 
                    (1) 

 

where p(𝑎 | s
k
) is a probability of selecting action 𝑎at the state s

k
, that is defined by the following Eq. (2). 

 

4. Select Action: 

The agent decides an action by the Boltzmann selection applied generally on Q-learning. The selection 

probability of the actions is shown by Eq. (2). 

 

𝑝 𝑎𝑖|𝑠
𝑘 =

𝑒𝑥𝑝⁡ 
𝑄 𝑠𝑘 ,𝑎 𝑖 

𝑇
 

 𝑒𝑥𝑝 ⁡ 
𝑄 𝑠𝑘 ,𝑎 𝑖 

𝑇
 𝑎∈𝑎𝑐𝑡𝑖𝑜𝑛𝑠

                             (2) 

 

where p(𝑎 | s
k
) is probability of selecting action at states

k
, k is time, T is temperature. 

 

5. Update each Q-table: 

Q-value is updated by Eq. (3), (4). 

 

𝑄 𝑠𝑘 , 𝑎 ←  1 − 𝛼 𝑄 𝑠𝑘 , 𝑎 + 𝛼𝑟 + 𝛾𝑉 𝑠𝑘+1                 (3) 

 

𝑉 𝑠𝑘+1 = 𝑚𝑎𝑥
𝑎∈𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑄 𝑠𝑘+1, 𝑎                           (4)  

 

wheres
k
 is the state at time k, s

k+1
 is the next state, 𝑎 is selected action, r is reward, α is learning rate (0 < α 

< 1),γ is discount rate( 0 < γ < 1 ). 

 

3. Simulation: 
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Here, we confirm that the proposed method is effective in a case of simulation with three Q-tables. 

Experiment Condition: 

We simulate the following conditions: In the experimental field, a mobile robot and an object exist as 

shown Fig. 2. The robot has a camera, and it moves according to information from the camera. The object has 

single color. The color is changed, when the object moves. The robot gets reward, if it finds the colored object at 

the determined position on the image plane ((a) in Fig.2). In this experiment, the different goal position is 

determined by each color. After the robot gets reward, the object moves to a random position in the field, and the 

object changes the color at random ((b) in Fig.2). 

 

 
Fig. 2: Experimental Field of Simulation 

 

The robot learns a policy of the set of state-action pairs to get more rewards. We show the learning’s with 

three Q-tables in Fig. 3. Q-table W (enough detailed), that has 3 axes: position axis, color axis and action axis. 

Q-table Pp (rough one), that has 2 axes: position axis and action axis. Q-table Pc (the rough other), that has 2 

axes: color axis and action axis. 

The color axis has 4 states, the position axis has 50 states, the action axis has 8 states. All the Q-values are 

initialized to 0.0, the reward r is set to ±1.0, the learning rate α is set to 0.08, the discount rate γ is set to 0.8, the 

temperature T of Boltzmann selection is set to 0.1. 

 

 
Fig. 3: Enough detailed and rough Q-tables. 

 

RESULTS AND DISCUSSION 

 

Here, we simulated some combinations of the three Q-tables. The results of simulations are shown in Fig. 4. 

The horizontal axis indicates the episode number; an episode is a period between a goal and the previous goal. 

The vertical axis indicates the total number of steps, a step is a period of doing an action. A gradient of each 

graph indicates a number of steps per episode. If the gradient becomes constant, the learning has converged. If 

the gradient is smaller, the learning acquires a better policy. If learning is efficient, the learning acquires early a 

good policy. An ordinary method is learning with each Q-table, one the detailed and two the rough Q-tables, W, 

Pp, Pc. 

The learning with Q-table Ppwas converging earlier than W early in the learning as shown Fig. 4. It shows 

that the rough Q-table Ppacquired a better policy early in the learning. However, the learning with Q-table Pp 

had converged on a worse policy than W, late in the learning as shown in Fig. 4. It shows that the Q-table 

Ppacquired a worse policy than W at last. 
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Fig. 4: Simulation Results of Some Combinations of the Three Q-Tables 

 

The gradient of Pc graph was too large. It shows that the rough Q-table Pc could not acquire a policy for 

goal achievement at all. 

The rough Q-table Ppwas available. The learning with Q-tables W+Pp converged earlier than that only with 

Q-table W, and acquired as efficient a policy as W at last. It shows that the robot acquired an efficient policy 

early in the learning by adding available Q-table. 

The rough Q-table Pc wasn't available at all. But the learning with Q-tables W+Pc converged slightly as late 

as that only with Q-table W, and it acquired as efficient a policy as W. It shows that the robot could learn an 

efficient policy with a little bit disturbances, even if the learning was disturbed by adding unavailable Q-table. 

The learning with three Q-tables W+Pp+Pc converged earlier than W, and it acquired as efficient a policy as 

W. It shows that it was effective that the proposed method is extended from dual Q-tables to multiplex Q-tables. 

However, the learning with Q-tables W+Pp+Pc converges slightly as late as that with Q-tables W+Pp, and it 

acquired as efficient a policy as W+Pp. The results show that the learning with multiplex Q-tables was more 

efficient in the case of adding available Q-tables and was slightly less efficient in the case of adding unavailable 

Q-tables. 

 

Conclusion: 

In this paper, we extended the proposed method to multiplexing learning spaces. We confirmed that it 

makes the learning more efficient with available spaces, and it makes the learning slightly inefficient with 

unavailable spaces, with multiplex learning spaces, too. We can anticipate efficiency by further multiplexing, 

whereas those show the possibility that multiplexing has large inefficiency by accumulating slight inefficiency 

with unavailable spaces. In the case, we must consider how to pick up available learning spaces as multiplex 

learning spaces. 
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