Heterosis and Combining Ability for Yield and its Components in Some Crosses of Soybean

Nassar M.A.A.

Department of Plant Production, Faculty of Agriculture (Saba Basha), Alexandria University, Egypt

Abstract: A diallel cross excluding reciprocals among six parents of soybean namely L86-K-73, Giza111, Giza22, H88L1, H155 and DR101 was utilized to estimate heterotic expression and combining ability for earliness traits, growth characters, yield and its components viz., number of pods/plant, number of seeds/pod, number of seed/plant, seed yield/plant(gm), 100-seed weight(gm), oil percentage and protein percentage. The parent L86-K-73 behaved as the earliest one and best in protein content, while parent (Gizal11) was the best for plant height, number of pods/plant, number of seeds/plant and seed yield/plant. The parent DR101 the best for number of branches/plant and gave the highest mean value in oil percentage. The hybrid produced from the (L86-K-73 X H155) was the earliest one among fifteen crosses and gave highest mean value for protein percentage. While the hybrid (Giza111 X H88L1) performed the highest mean value for number of pods/plant, number of seeds/plant and seed yield / plant. Highly significant negative heterotic effects relative to mid-parent for flowering date was detected for two crosses and four crosses exhibited highly significant positive heterotic effects to better parent for plant height. All crosses expressed highly significant positive heterotic effects for number of pods / plant and number of seeds / plant. Highly significant mean squares due to both general and specific combining ability were detected for all traits except number of seed/pod. Moreover high G. C. A / S. C. A ratio which largely exceeded the unity were obtained for earliness traits, number of branches / plant, number of pods / plant and number of seeds / plant indicating that the additive and additive x additive interaction types of gene action were predominant in controlling these traits. High heritability values in narrow and broad sense were detected for flowering date, maturity date, yield components, oil and protein content.

Key words: Soybean, Heterosis, Combining ability and heritability.

INTRODUCTION

The soybean (Glycine max (L.) Merrill), a native of eastern Asia, is one of oldest crops of that area and it considered as a vital leguminous crop. The soybean is a crop with many uses .It provides human food, animal feed and materials for many industrial uses .As a source of protein, oil, and fat, it compliments the contribution of most other major crop. In Egypt, soybean is an important food legume crop that was introduced in the 1970's and gained local interest since then soybean product commercially since 1972, when about 2800 feddans* were grown this area has increased about 112,000 feddans in 1986. The primary goal of the researcher effort is to increase yield. The average seed yield increased from 400 Kg/feddan year 1972 to more than 1500 Kg/feddan year 2008. Early maturity is another important character since it frees land quickly, often allowing an additional planting of the same crop or other crop in the same year. The plant breeders are interested in the determination of gene effects to establish the most advantageous breeding programs for the improvement of the desired characters (Tawar et al., 1989) especially for soybean because it is an important source of protein and oil, its seeds contain about 14 to 24 % or more oil and about 40 to 48 % protein (Brim and Burton, 1979). In Egypt, the quantity of oil seeds production including main oil crops; i.e., cotton, sesame, flax and peanut, is far from being sufficient for excessive demand. Therefore, Egyptian plant breeders intensified their efforts to increase soybean yield and yield components to meet the increasing demanded for oil and protein production. Such improvement is strongly dependent up on the genetic improvement of soybean germplasm (Bastawisy et al., 1997 and El-Hosary et al., 2001). To achieve such goals, it is important to study the type and mode of gene actions that influence agronomic traits. Combining ability analysis helps the breeder to identify and select superior genotypes for seed yield and major yield attributes.

Diallel crossing analysis is an excellent tool providing the breeder with: (I) The nature and amount of genetic parameter. (II) General and specific combining ability of parents and their hybrids, respectively. There are two main approaches to achieve there objectives, namely Griffing's approach and Hayman's approach. Heterosis effects for hybrids over their mid and better parents were reported by many authors (Konieczny, 1986; Raut *et al.* 1988 and Loiselle *et al.* 1990).

The main objectives of the present investigation are: a) To study the heterosis of early maturity traits such as number of days to inflorescence, days to maturity, maturity period, yield and yield components characters such as number of seeds/pod, 100-seed weight, seed yield/plant and the number of branches/plant. b) To estimate the relative importance of general combining ability (g. c. a) and specific combining ability (s. c. a) and c) Investigate of genetic components i.e. additive variance, non-additive variance, environmental variance and heritability.

MATERIALS AND METHODS

Two varieties and four lines of soybean (*Glycine max L.Merrill*) were used as parents in 2008 and 2009 seasons. Table (1) shows the code number, genotype names, pedigree, maturity group, origin, growth habit, pubescence color and flower color of the parents. A half diallel cross set involving the six parents were made during summer season 2008 at Itay El-Barud (Zarzora) Agricultural Research Station. In summer season 2009the six parents along with their offspring's were growth in a randomized complete block design with three replicates. Each plot consisted of four ridges of four meter long and 60 cm width, area of plot = (9.6 m²). Seeds were sown in hills and spaced at 20 cm with one seed /hill on one side of the ridge. Phosphorus fertilizer was applied in the form of calcium superphosphate (15.5 % P₂O₅) at the rate of 150 kg/feddan. Potassium fertilizer was added in the form of potassium sulphate (48 % K₂O) at the rate of 50 kg/feddan. Both of phosphorus and potassium fertilizer were added during the soil preparation and incorporated into the soil before irrigation. Nitrogen fertilizer was added in form of ammonium nitrate (33.5 % N) at the rate of 25 kg/feddan applied before the first irrigation, in addition to Rhizobia inoculation (*Rhizobium japonicum domiati*). The Herati method of planting was used in whish the soil was irrigated before sowing. All cultural practices were carried out as recommended for growing at the proper time.

Table 1: Code number, genotype names, pedigree, maturity group, country of origin, growth habit, pubescence color and flower color.

Code number	Genotype	Pedigree	Maturity group	Country of origin	Growth habit	Pubescen-ce color	Flower color
1	L86-k-73	Selected from L73- 4673	I100-105 dayes	USA	I.D	Gray	White
2	Giza 111	Crawford X Celest	IV120- 130dayes	Egypt	I.D	Tawny	Purple
3	Giza 22	Forrest X Crawford	IV120- 130dayes	USA	I.D	Tawny	Purple
4	H88L1	G21 X L86-K-73	III115- 120Days	Egypt	I.D	Tawny	White
5	Н 155	G 111 X L86-K-73	III115- 120dayes	Egypt	I.D	Gray	Purple
6	DR 101	Selected from Elgin	V130-140 daye	USA	D	Tawny	Purple

I.D- Indeterminate

D- Determinate

I- Group (1) V-Group (5)

III- Group (3) IV- Group (4) V-Group (5)

Data of the following traits were recorded on ten garded individual plants chosen at random from each plot. 1 - Number of days to inflorescence (days): It was estimated as the number of days from sowing to the appearance of the first inflorescence on the main stem. 2- Number of days to maturity (days): It was estimated as the number of days from sowing to the maturity of about 95% of the pods. 3-Maturty period (days): It was estimated as the number of days between flowering and maturity dates. 4- Plant height (cm), 5- Number of branches / plant: 6- Number of pods / plant. 7- Number of seeds / pod. 8- Number of seeds / plant. 9- Seed yield (g/plant). 10- Weight of 100 seeds in grams. 11- Oil content (%): Oil percentage in soybean seeds was determined according to the extraction method described by A.O.A.C. (1975) by using Petroleum ether b-p= (62 - 68) as a solvent. 12- Protein content (%): Protein percentage in the seeds of soybean was calculated by multiplying total nitrogen percentage by 6.25 N%. The nitrogen percentage was determined using the Micro-Kjeldahl method as described by A.O.A.C (1975).

Statistical Analysis:

The ordinary analysis of variance for randomized complete blocks design was firstly performed for F_1 diallel set according to Snedecor and Cochran (1967). A one tail F ratio was used to test the significance of different sources of variation.

Heterosis was expressed as the deviation of F1 from mid-parent mean (\overline{MP}) and better-parent mean

$$(\overline{BP})$$
, (Mother and Jinks, 1971)

General and specific combining ability estimates were obtained by employing Griffing's diallel cross analysis (1956) designated as method 2 model 1.

Estimation of genetic variance i.e additive, non additive and heritability according to Singh and Choudhary (1976).

RESULTS AND DISCUSSION

Analysis of variance for all characters are presented in Table (2). The obtained results showed that genotypes mean squares were highly significant for all traits except number of seeds/pod indicating wide diversity between the parental genotypes of this studies.

Table 2: Mean square of all traits studies for half diallel crosses sovbean

S.O.V	D.F	Flowering date (days)	Maturity date (days)	Maturity period (days)	Plant height (cm)	No. of branches / plant	No.of pods/ plant	No.of seeds/ pod	No.of seeds/ plant	Seed yield/ plant(g)	100- seed Weight (g)	Oil content %	Protein content %
Block	2	0.56	1.45	2.57	6.53	0.69	31.24	0.004	88.14	78.26	0.18	2.24	1.47
Genotype	20	112.11**	289.59**	65.46**	1599.78**	7.89**	4153.03**	0.04	7988.49**	757.29**	17.32**	8.61**	29.12**
Error	40	2.81	1.51	4.26	9.24	0.09	33.30	0.01	153.4	10.34	0.66	0.85	0.96

NS: Not significant

The mean performance of the six parental genotypes and fifteen crosses for the studied traits are shown in Table(3). It is clear that variety L86-K-73 behaved as the earliest one for flowering date, maturity date and maturity period (29.13, 98.57 and 69.43 days) respectively. The parent Gizal 11 recorded the highest values with respect to plant height, number of pods/plant, number of seeds/plant and seed yield/plant (gm) while parent L86-K-73 produced the lowest value for these traits The highest number of branches was observed in the parent DR101 followed by H88L₁, while the lowest number was in parent L86-K-73.

Table 3: Mean performance of all traits studied for half diallel crosses of soybear

Genotypes	Flowering	Maturity	Maturity	Plant	No. of	No.of	No.of	No.of	Seed	100-seed	Oil	Protein
71	date	date	period	height	branches	pods	seeds	seeds	yield	Weight	Content	content
	(days)	(days)	(days)	(cm)	/ plant	/plant	/pod	/plant	/plant	(g)	%	%
									(g)			
L 86-K-73 ₁ (P1)	29.13	98.57	69.43	54.37	4.13	103.80	2.17	226.87	23.37	10.30	18.67	48.79
Giza 111(P2)	41.17	120.70	79.53	139.87	7.60	140.26	2.40	334.13	57.80	17.30	18.40	41.13
Giza 22(P3)	43.27	122.87	79.60	120.47	7.17	127.07	2.37	301.05	50.28	16.70	21.90	43.30
H88L1(P4)	36.57	116.97	80.40	121.37	8.13	134.63	2.01	263.57	44.36	16.83	18.40	50.30
H 155(P5)	35.20	114.20	79.00	112.97	6.13	103.77	2.27	235.17	41.08	17.47	21.20	42.93
DR 101(P6)	51.57	138.87	87.30	128.07	8.33	111.53	2.47	275.05	50.06	18.20	19.73	43.43
P_1xP_2	33.60	110.57	76.97	103.93	5.27	179.10	2.37	422.69	62.43	14.77	19.67	44.13
P_1xP_3	36.33	113.07	76.73	139.40	8.17	162.53	2.36	352.20	56.46	16.03	17.87	40.10
P_1xP_4	31.73	115.30	83.57	153.80	10.03	210.93	2.27	475.70	82.30	17.30	19.50	44.13
P_1xP_5	31.67	109.27	77.60	130.80	6.17	137.53	2.33	319.90	50.64	15.83	16.73	49.47
P_1xP_6	40.37	121.23	80.87	126.47	7.17	128.97	2.27	289.23	50.62	17.50	18.47	46.43
P_2xP_3	41.57	120.00	78.43	94.23	9.17	197.97	2.20	435.43	62.70	14.40	20.60	45.47
P_2xP_4	37.97	117.30	79.33	134.13	9.57	231.10	2.30	527.57	98.29	18.63	18.27	46.43
P_2xP_5	38.33	118.77	80.43	112.63	10.17	169.80	2.23	375.90	70.67	18.80	20.73	40.70
P ₂ xP ₆	48.57	130.83	82.27	115.53	10.23	155.90	2.10	335.63	55.82	16.63	17.90	42.83
P_3xP_4	40.17	119.90	79.73	101.09	8.07	219.50	2.03	439.33	61.95	14.10	19.13	42.83
P_3xP_5	41.83	117.20	75.37	121.67	7.17	157.63	2.27	365.50	62.98	17.23	17.00	41.90
P_3xP_6	47.97	133.07	85.10	147.80	8.43	173.17	2.17	376.07	65.81	17.50	15.87	47.90
P_4xP_5	35.33	117.20	81.87	83.50	7.03	177.63	2.13	382.77	39.31	10.27	18.17	48.83
P_4xP_6	48.27	135.33	87.07	117.17	8.07	197.67	2.17	429.03	72.08	16.80	17.03	43.43
P ₅ xP ₆	44.23	135.57	91.33	93.23	6.07	181.43	2.07	360.80	46.90	13.00	22.17	39.63
L.S.D 0.05	2.77	2.03	3.41	5.02	0.49	9.52	0.17	20.44	5.31	1.34	1.52	1.62
L.S.D 0.01	3.71	2.71	4.56	6.71	0.66	12.74	0.22	27.34	7.11	1.78	2.03	2.16
		., -										

For 100- seed weight, parent DR 101heavyer one (18.2g) and parent L86-K-73 lightest parent (10.3g). Concerning oil and protein percentage, parent Giza22 gave highest value for oil content (21.90%) and parent H88L₁ gave high value for protein content (50.30%)..

It is also clear from data in Table(3) that the F1 cross (L86-K-73xH155) expressed the lowest value for flowering and maturity dates (31.67 and 109.27 days) respectively.

The cross (L86-K-73xH88L1) produced the tallest plants (153.80), where as cross (H88l1xH155) the shortest plants.

The cross (Giza111xDR101) gave the highest value for number of branches/plant (10.23), whereas cross (L86-K-73xGiza111) gave the lowest value for this trait (5.27) The cross (Giza 111×H88L1) had the highest mean values for number of pods/ plant, number of seed/ plant and seed yield /plant.

For oil content, the cross (H155×DR101) gave highest mean value (22.17%) followed by cross (Giza111×H155), (20.73%), while the cross (Giza 22×DR101) gave the lowest mean value (15.87%). For protein content, the crosses (L86-K-73×H155) and (H88L1×H155) were superior (49.47% and 48.83%), while the cross (H155×DR101) gave the lowest mean for this traits.

Heterosis expressed as the percentage of F1 mean performance from its mid and better parent average values for all studied traits are presented in Table(4 and 5) respectively.

^{* :} Significant at 0.05% level of probability
**: Significant at 0.01% level of probability

For flowering date, two crosses expressed significant negative heterosis relative to mid-parent value (L86-K-73xGiza111) and cross (L86-K-73xH88L₁). Highly significant positive heterosis relative to better parent expressed for all crosses.

Table 4: Heterosis of mid-parent (MP) of all traits studied for half diallel crosses of soybean.

	Flowering	Maturity	Maturity	Plant	No. of	No.of	No.of	No.of	Seed	100-seed	Oil	Protein
Crosses	date	date	period	height	branches	pods	seed	seed	yield	Weight	content	content
	(days)	(days)	(days)	(cm)	/ plant	/plant	/pod	/plant	/plant	(g)	%	%
					_		_	_	(g)			
P_1xP_2	-4.41**	0.85	3.34*	7.01**	-10.14**	46.77**	3.49**	50.69**	28.14**	7.03**	6.09**	-1.85*
P_1xP_3	0.36	2.12*	2.97*	59.46**	44.60**	40.80**	1.32**	33.43**	49.98**	18.74**	-11.93**	-12.92**
P_1xP_4	-3.41**	6.99**	11.55**	75.03**	63.62**	76.93**	8.61**	93.99**	88.47**	27.49**	5.18**	-10.94**
P_1xP_5	-1.54	2.71**	4.56**	56.33**	20.27**	32.51**	4.95**	38.47**	98.79**	13.97**	-16.10**	7.87**
P_1xP_6	0.05	2.11*	3.20*	38.64**	15.09**	19.79**	-2.16**	15.25	50.62**	22.80**	-3.80**	0.69
P_2xP_3	-1.54	-1.47	-1.43	-27.61**	24.17**	48.11**	-7.95**	37.10**	-14.68**	-15.29**	-2.23**	7.70**
P_2xP_4	-2.32	-1.29	-0.79	2.69	21.68**	68.14**	4.31**	76.53**	-14.30**	9.14**	-0.71	0.77
P_2xP_5	0.38	1.12	1.47	-10.91**	48.14**	39.16**	-4.7**	32.06**	7.30**	8.11**	5.77**	-3.16**
P_2xP_6	2.43*	-0.03	-1.41	-7.03**	32.00**	30.68**	-13.93**	16.52	18.77**	-6.31**	-6.14**	1.30
P_3xP_4	0.63	-0.02	-0.34	-16.40**	5.49**	67.75**	-16.00**	55.62**	-40.72**	-15.92**	-5.06**	-8.48**
P_3xP_5	6.61**	-1.13	-4.96**	4.24	7.82**	36.57**	-2.16**	36.32**	-24.00**	0.82	-2.11**	-3.39**
P_3xP_6	1.16	1.68	1.98	18.93**	8.77**	45.16**	-15.33**	30.56**	31.14**	0.29	-23.78**	10.45**
P_4xP_5	-1.55	1.40	2.72	-28.74**	-1.40**	49.02**	-0.46**	53.49**	-38.83**	-40.12**	-8.23**	3.67**
P_4xP_6	9.53**	5.79**	3.84*	-6.05**	-1.94**	60.60**	-2.91**	59.31**	-28.45**	-4.11**	-10.70**	-7.34**
P_5xP_6	1.95	7.14**	9.84**	-22.64**	-16.04**	68.54**	-12.66**	41.43**	-2.79	-27.13**	8.30**	-8.22**
L.S.D	2.40	1.76	2.95	4.35	0.43	8.25	0.14	17.68	4.6	1.16	1.32	1.40
0.05												
L.S.D	3.22	2.35	3.95	5.81	0.57	11.03	0.18	23.69	6.14	1.54	1.76	1.87
0.01												

PI- L 86-K-73 P2- Giza 11 P3- Giza 22 P4- H88L1 P5- H 155 P6- DR 101 NS:Not significant *and** significant at0.05 and 0.01 levels of probability, respectively

Table 5: Heterosis of better- parent (BP): of all traits studied for half diallel crosses of soybean

	Flowering	Maturity	Maturity	Plant	No.of	No.of	No.of	No.of	Seed	100-seed	Oil	Protein
Crosses	date	date	period	height	branches	pods	seeds	seeds	yield	Weight	Content	Content
	(days)	(days)	(days)	(cm)	/ plant	/plant	/pod	/plant	/plant	(g)	%	%
					_	_	_	_	(g)			
P_1xP_2	15.35**	12.17**	10.86**	-25.7**	-30.66**	27.69**	-1.25**	26.5*	-11.7**	-14.62**	-9.55**	5.36**
P_1xP_3	24.72**	14.71**	10.5**	15.71**	13.95**	27.9**	-2.95**	17	4.47	-4.01**	-17.81**	-18.4**
P_1xP_4	8.93**	16.97**	20.37**	26.72**	23.37**	55.98**	4.61**	80.48**	21.92**	2.97**	-12.27**	5.59**
P_1xP_5	8.72**	10.85**	11.77**	15.78**	0.65**	32.5**	2.64**	35.8**	42.52**	-9.39**	1.39	-21.08**
P_1xP_6	38.59**	22.99**	16.48**	-1.25	-13.93**	15.64**	-5.24**	5.16	10.67**	-3.85**	-4.84**	-6.39**
P ₂ xP ₃	0.97	0.58	-1.38	-32.63**	20.66**	41.15**	-8.33**	30.32**	-16.31**	-16.76**	5.01**	-5.94**
P_2xP_4	3.83**	0.28	-0.25	-4.1	17.71**	64.76**	-4.17**	57.9**	-23.85**	7.69**	-8.41**	-0.71**
P_2xP_5	8.89**	4.00**	1.8	-19.48**	33.82**	21.06**	-7.08**	12.5	0.40	7.61**	-5.19**	-2.22**
P_2xP_6	17.97**	8.39**	3.44*	-17.4**	22.81**	11.15*	-14.98**	0.45	4.92	-8.63**	-1.38	-9.28**
P_3xP_4	9.84**	2.5*	0.16	-16.71**	-0.74**	63.04**	-14.35**	45.93**	-48.21**	-16.22**	-14.85**	-12.65**
P_3xP_5	18.83**	2.63*	-4.59**	1.00	0	24.05**	-4.22**	21.38*	-27.57**	-1.37*	-3.23**	-22.37**
P_3xP_6	10.86**	8.3**	1.34	15.41**	1.2**	36.28**	-12.15**	24.9*	20.46**	-3.85**	10.29**	-27.53**
P_4xP_5	0.37	2.63*	3.6*	-31.2**	-13.5**	31.94**	-6.17**	45.23**	-48.7**	-41.21**	3.92**	-14.29**
P_4xP_6	31.99**	15.7**	10.22**	-9.3**	-3.12**	46.82**	-12.15**	62.78**	-40.84**	-7.69**	-13.66**	-13.69**
P_5xP_6	25.65**	18.71**	15**	-27.2**	-27.13**	15.63**	-16.19**	31.18**	-6.49**	-28.57**	-8.75**	4.58**
L.S.D	2.77	2.03	3.42	5.02	0.5	9.52	0.17	20.44	5.31	1.34	1.52	1.62
0.05												
L.S.D	3.71	2.71	4.56	6.71	0.65	12.74	0.22	27.34	7.11	1.78	2.03	2.16
0.01						1		1	1		1	

P1- L 86-K-73 P2- Giza 11 P3- Giza 22 P4- H88L1 P5- H 155 NS:Not significant *and** significant at 0.05 and 0.01 levels of probability, respectively.

For maturity date, six crosses significant positive heterosis relative to mid-parent, while all crosses significant positive heterosis relative to better parent.

P6- DR 101

Concerning maturity period, one cross (Giza22xH155) expressed significant negative heterosis relative to mid-parent value and also to better parent value (-4.96 and -4.59) respectively.

For plant height, six crosses exhibited highly significant positive heterotic effects to mid-parent. However the highest heterotic effects were detected for the cross (L86-K-73xH155). To better parent showed that highly significant negative and positive heterotic effect for eight and four crosses respectively. With regard to number of branches/plant, eleven and eight crosses showed highly significant positive heterotic effects relative to midparent and better parent, respectively. The results were agreement with those previously obtained by Habeeb *et al* (1988), El-Hosary *et al* (2001), Mansour *et al* (2002) and Fayiz (2009).

For number of pods/plant all crosses showed a highly significant positive heterosis percentage relative to mid and better parent. Moreover, the desirable heterotic effect this traits was detected for the crosses (L86-K-73 XH88L1) and (Giza111 X H88L1) relative to mid and better parent respectively.

For number of seed/plant, five and two crosses showed significant positive heterotic effect to mid and better parent values, respectively. Concerning number of seed/plant, all crosses expressed highly significant positive except two crosses not significant relative to mid-parent, while four crosses not significant relative to better parent

With regard to seed yield/plant, seven and four crosses exhibited highly significant favorable positive to mid and better parent value. However, the cross(L86-K-73 XH155) exhibited the best heterosis for mid and better parent (98.79% and 42.52%) respectively.

As for 100-seed weight, significant positive heterotic effects were detected for seven and three crosses relative to mid and better parent.

Among those are Shang *et al* (1992), Ibrahime *et al*.(1996), Bastawisy et al.(1997), Mansour *et al*.(2002), and El-Garhy et al (2008). They reported that, heterosis was significant positive or negative for yield and its components traits.

Regarding oil percentage, four and three crosses expressed highly significant positive heterotic effects relative to mid and better parent values respectively. Moreover the crosse(H155 X DR101) was the best since it had the highest heterosis value to mid-parent (8.3%), while cross (Giza22 X DR101) gave highest heterosis value to better parent (10.29%)

For protein percentage, four and three crosses exhibited significant positive heterosis relative to mid and better parent respectively. The cross (Giza22 X DR101)gave highest value (10.45%) to mid-parent, however, the cross (L86-K-73 X H88L1) gave highest value (5.59%) to better parent.

Similar results were obtained by Brim and Brurton (1979), Wehrmann et al (1987), Fahmi et al (1999) and Chen et al (2008).

Regarding oil percentage, four and three crosses expressed highly significant positive heterotic effects relative to mid and better parent respectively. Moreover, the cross(H155 X DR101) was the best since it had the highest Heterosis value (8.3%) to mid parent and cross (H88L1 X DR101) (10.29%) to better parent.

Data presented in Table (6) indicated that highly significant mean squares due to both general (gca)and specific(sca) combining ability for all traits studied except number of seed/pod. High gca/sca ratio which largely exceeded the unity for seven characters, such results indicated that additive and additive by additive types of gene action were important role in the inheritance for these traits.

Table 6: Mean squ	ble 6: Mean square of General and specific combining ability (G.C.A, S.C.A) and G.C.A/ S.C.A ratio of all traits studied for half diallel crosses soybean.													
S.O.V		Flowering	Maturity	Maturity	Plant	No.of	No.of	No.of	No.of	Seed	100-			
	D.F	date	date	period	height	branches	pods	seeds	seeds	yield	seed	Oil	Protein	
		(days)	(days)	(days)	(cm)	/ plant	/plant	/pod	/plant	/plant	weight	content	content	
						_	_	_	_	(g)	(g)	%	%	
G.C.A	5	432.96**	1081.64**	184.97**	1579.27**	16.24**	4723.18**	0.06	9633.19**	682.77**	6.12**	6.38**	15.29**	
S.C.A	15	5.16**	25.57**	25.63**	1606.62**	5.10**	3962.98**	0.03	7440.26**	782.12**	21.05**	9.36**	33.73**	
G.C.A/S.C.A		83.9	42.30	7.22	0.98	3.18	1.19	2	1.29	0.87	0.29	0.68	0.45	
Error	40	2.82	1.51	4.26	9.25	0.09	33.30	0.01	153.4	10.34	0.66	0.85	0.96	

Estimates of general combining ability effects (ĝi) of each parent for all studied traits are presented in Table (7). From Table (7) it was observed that the high negative (ĝi) values were required to develop earlier varieties. The parent L86-k-73 expressed high significant negative (ĝi) effects for flowering date, maturity date and maturity period. Therefore this parent could be considered a good combiner for earliness among the studied six parents. Parent genotype H88L1 was the best combiner for plant height, number of branches/plant, number of pods/plant, 100-seed weight and protein percentage. Whereas parent Giza22 was the best combiner for oil percentage.

Table 7: General	combining a	bility (G.C.A) e	ffects of all trait	s studied for	half diallel cros	ses of soybean	
	Floweri	Maturity	Maturity	Plant	No of	No of	

S.O.V	Floweri ng date	Maturity date	Maturity period	Plant height	No.of branches	No.of pods	No.of seeds	No.of seeds	Seed yield	100-seed weight	Oil content	Protein content
	(days)	(days)	(days)	(cm)	/ plant	/plant	/pod	/plant	/plant (g)	(g)	%	%
L 86-K-73 ₁	-5.79**	-5.46**	-3.67**	-1.22*	-0.2*	-13.91**	0.08**	-7.65	-2.63**	-0.60**	0.55**	0.93**
Giza 111	0.51	-0.42*	-0.94*	3.40**	-0.59**	9.55**	0.07**	40.56**	6.88**	0.20	-0.28	-0.15
Giza 22	2.02**	0.84**	-1.18**	-0.29	0.29**	4.87*	-0.03*	5.57	-0.13	0.47**	0.61**	-0.87**
H88L1	-1.46**	-0.41*	-1.05**	3.00**	0.49**	21.01**	-0.05**	2.45	1.62**	0.48**	-0.66**	0.59**
H 155	-2.06**	-1.98**	2.1**	-3.63**	-0.60**	-11.80**	-0.02	-42.67**	-6.50**	-0.65**	-0.35**	0.48**
DR 101	6.78**	7.43**	4.66**	-1.25*	0.61**	-9.72**	-0.05**	1.74	0.77	0.10	0.13	-0.98**
S.E(gi)	0.54	0.39	0.67	0.88	0.1	1.86	0.03	10.87	1.03	0.26	0.3	0.32
S.E(gi-gj)	0.84	0.61	1.03	1.52	0.21	2.89	0.05	16.22	1.61	0.41	0.46	0.44
NIC NI	100		10011 1	C 1 1 11	7. 1							

NS:Not significant *and** significant at 0.05 and 0.01 levels of probability, respectively.

Specific combining ability effects (ŝij) for all studied traits are presented in Table (8). Results indicated that three crosses expressed significant negative (S.C.A) effects for maturity date. Moreover the cross (Giza 111 × H88L1) had the highest desirable S.C.A effects for this trait followed by the cross (Giza 22× H155).

Moreover, the cross(H88L1 X DR101) had the height significant positive values for s.c.a effects for plant height, number of branches/plant, number of seed / plant, seed yield/plant and protein percentage. Cross (L86-K73 X Giza22) had height positive significant value S.C.A effects for oil percentage. Other crosses had negative or positive significant S.C.A effects.

Through appropriate selection programs (pedigree selection, modified single seed or single pod descent) desirable segregates may be obtained from such crosses.

Estimates variances of the genetic and environmental components. heritability for all studied characters are given in Table (9). From these data it's clear that confirmed the additive genetic variance. For all traits, where non additive variance was more important than additive gene action in controlling the inheritance.

Narrow sense heritability estimates were low for plant height and number of branches/plant, intermediate for maturity period 0.54 and high for flowering date and maturity date (.91,and .90) respectively. The results from table (9) also heritability estimates ranged from 0.03 for seed yield/plant to 0.21 for protein content. These results revealed that dominant genetic variance more important for these traits. Such results indicated that bulk method may be useful in this respect.

These results are in full agreement with those obtained by Kunta et al (1985), Ibrahim et al (1996), Bastawisy et al (1997), El-Garhy et al (2008) and Fayiz (2009).

Table 8: Specific combining ability (S.C.A) effects of earliness and growth traits for half diallel crosses of soybean

	Flowering	Maturity	Maturity	Plant	No.of	No.of	No.of	No.of	Seed	100-seed		
Crosses	date	date	period	height	branches	pods/plant	seed	seed	yield	weight	Oil	Protein
	(days)	(days)	(days)	(cm)	/ plant		/pod	/plant	/plant	(g)	content%	content
					_		_		(g)			%
P_1Xp_2	-0.88	0.13	1.01	23.75**	1.48**	20.89**	0.04	9.28	3.25	1.71**	-0.86	-4.12**
P_1xP_3	0.35	1.37*	1.01	15.29**	-0.69**	9.01*	0.08	15.63	7.09**	0.85	1.86**	-1.20
P_1xP_4	-0.77	4.85**	5.62**	7.40**	0.79**	41.26**	-0.01	113.15**	24.64**	0.97	-0.43	4.31**
P_1xP_5	-0.24	0.39	0.63	13.84**	-0.24	0.68	-0.02	20.64	7.62**	2.73**	2.05**	-2.95**
P_1xP_6	-0.38	-1.07*	-0.69	21.53**	1.62**	-9.97*	0.23**	-18.60	0.66	2.72**	0.14	-0.99
P_2xP_3	-0.71	-0.74	-0.02	13.38**	-0.20	20.98**	-0.04	42.36	-4.15	-0.62	-1.45*	-3.01**
P_2xP_4	-0.84	-2.19**	-1.35	18.99**	2.18**	37.96**	0.02	108.51**	28.31**	0.64	1.56*	-0.77
P_2xP_5	0.13	0.85	0.72	10.83**	-0.71**	9.48*	0.04	20.14	16.81**	0.30	-1.43*	4.67**
P_2xP_6	1.52*	-0.5	-2.02*	-0.9	-0.04	-6.50	0.02	-28.71	-8.24**	1.22	-0.30	3.10**
P_3xP_4	-0.14	-0.85	-0.71	10.27**	-0.02	31.05**	0.11	37.13	-2.20	1.71**	-0.63	1.88*
P_3xP_5	2.12*	-1.98**	-4.10**	3.61*	1.53**	14.00**	0.01	26.59	8.21**	3.00**	1.49*	-3.38**
P_3xP_6	-0.59	0.47	-1.05	-0.89	1.27**	15.45**	-0.09	28.58	7.86**	0.09	-1.79*	-0.22
P_4xP_5	-0.9	-0.73	0.17	3.85*	-0.94**	5.85	0.93**	14.88	-13.71**	1.42*	-0.97	-3.63**
P_4xP_6	3.19**	3.98**	0.79	22.58**	0.00	23.81**	0.02	55.56**	11.95**	0.94	-2.55**	3.83**
P_5xP_6	-0.23	5.79**	6.03**	6.78**	0.59**	40.39**	-0.01	50.62**	-4.74*	1.37*	-1.70*	-3.50**
S.E(sij)	1.23	0.9	1.51	2.22	0.22	4.22	0.07	23.75	2.35	0.59	0.67	0.72
S.E (sij-	2.22	1.63	2.73	4.02	0.16	7.63	0.13	42.93	4.25	1.07	1.22	1.3
sik)		1			1		ĺ			1		

P1- L 86-K-73 P2- Giza 111 P3- Giza 22 P4- H88L1
NS:Not significant *and** significant at 0.05 and 0.01 levels of probability, respectively.

Table 9: Estimates of additive and nonadditive genetic variance, environmental variance and heritability for all characters among half diallel crosses of soybean.

Estimates	Flowering date (days)	Maturity date (days)	Maturity period (days)	Plant height (cm)	No.of branches / plant	No. of pods /plant	No of seeds /pod	No of seeds /plant	Seed yield /plant (g)	100- seed weight (g)	Oil content%	Protein contents%
Additive variance	86.95	224.02	29.84	26.84	2.79	190.05	0.008	548.23	24.84	3.73	0.75	4.61
Non-additive variance	2.34	24.06	21.37	497.37	3.01	929.68	0.02	1286.86	371.7	15.39	8.51	18.77
Environmental variance	28.46	35.53	22.78	147.75	3.27	199.90	0.03	860.2	231.02	6.98	2.55	7.88
Heritability in broad sense	0.75	0.87	0.69	0.78	0.64	0.85	0.48	0.68	0.63	0.73	0.75	0.75
Heritability in narrow sense	0.73	0.79	0.4	0.04	0.31	0.14	0.14	0.2	0.04	0.14	0.07	0.15

P5- H 155

P6-DR101

REFERENCES

A.O.A.C., 1975. Association of Official Agriculture Chemists. Official Methods of analysis 12th ed. Washington, D.C., USA.

Bastawisy, M.H., M.S. Eissa, K.A. Ali, S.H. Mansour and M.S. Ali, 1997. Gene effect and heritability in soybean (Glycine max (L.) Merril). Annals of Agric. Sci Moshtohor, 35(1): 15-24.

Brim, C.A. and J.W. Burton, 1979. Recurrent selection in soybean. It Selection for increased percent protein in seeds. Crop Sci., 19: 494-498.

Chen, H.H., 2008. Diallel analysis of the genetic regulation of protein and oil contents in soyabean. Agric. Sci., 44: 643-648.

EL-Garhy, A.M., M. Shaaban, Ola, A.M. EL-Galaly, M.M. Omran, E.H. El-Harty and S.B. Ragheb, 2008. Combining ability and heterosis in some top crosses of soybean (*Glycine max (L) merrill*). Annals of Agric. Sci., Moshtohor, 46(1): 45-53.

EL-Hosary, A.A., M.H. Bastawisy, S.H. Mansour, Kh. A. AL-Assily and M.H. Metawea, 2001. Heterosis, gene effect, heritability and genetic advance in soybean (*Glycine max* (L.)Merril). Menoufiya J. Agric. Res., 26(4): 1071-1083.

Fahmi, A.L., R.A. Eissa, A.A. Nawar, M.H. Habeeb and E.M. Zayed, 1999. Genetic performance of seed quality characters of five soybean (Glycine max (L.) Merril) varieties and their diallel crosses. Menoufiya J. of Agric. Res., 24(3): 999-1015.

Fayiz, E.A.W., 2009. Diallel cross analysis for some quantitative characters in soybean. M. Sc. Thesis in Agronomy, Agronomy Department, Faculty of Agriculture, Tanta Uni. Egypt.

Griffing, J.B., 1956. Concept of general and specific combining ability in relation to diallel crossing system. Austr. J. of Biol. Sci., 9: 463-493.

Habeeb, M.B., M.I.A. Sharif, A.A. EL-Hosary, M.A. Naseeb and A.M. Hablas, 1988. Inheritance of earliness, yield and yield components in soybean (*Glycine max* (L.) Merril). Menoufiya J. Agric. Res., 13(1): 711-723.

Ibrahim, H.M., A.I. Nawar and S.H. Mansour, 1996. Heterosis, combining ability and components of genetic variance in soybean (*Glycine max (L.) Merrill*). Menoufiya J. Agric. Res., 21(4): 851-862.

Konieczny, G., 1986. Performance of some important characters of hybrid soybean (F1) in a cool climatc. Soybean Genetic Newesletter, 13: 99-105.

Kunta, T., L.H. Edwards, R.W. Mcnew and R. Dinkins, 1985. Heterosis performance and combining ability in soybean. Soybean Genetics Newsletter, 12: 97-99.

Loiselle, F., H.D. Voldeng and C.A. Pierre, 1990. Analysis of agronomic characters for eleven parent diallel of early maturity soybean genotypes. Can. J. Plant. Sci., 70: 107-115.

Mansour, S.H., Kh. A. AL-Assily, M.S.A. Mohamed and M.S. Said, 2002b. Estimation of heterosis and combining ability in soybean (Glycine max (L.) Merril) by diallel cross analysis. Menoufiya J. Agric. Res., 27(3): 487-497.

Mother, K. and J.L. Jinks, 1971. Biometrical Genetics (2nd ed). Chapman and Hall Ltd., London, pp. 382. Raut, V.M., G.B. Halwankar and V.P. Patil, 1988. Heterosis in soybean. Soybean Genetics Newsletter, 15: 57-60.

Shang, C.S., B. Shi and S.H. Ciung, 1992. Studies on early maturity and high yield in hybrid progenies of soybean with different ecological types. Acta Agric. Boreali Sinica, 7(4): 46-51.

Singh, R.K. and B.D. Choudhary, 1976. Biometrical techniques in genetics and breeding. International Bioscience Publishers Hissar (India), pp. 94-97.

Snedecor, G.W. and W.G. Cochran, 1967. Statistical methods, Oxford, I.B.H.Publishing Co., Calcutta.

Tawar, M.L., A.K. Mishra and S.K. Rao, 1989. Gene action in soybean. Indian J. of heredity, 21: 10-16.

Wehrmann, V.K., W.R. Fehr, S.R. Cianzio and J.F. Cavins, 1987. Transfer of high seeds protein to high-yielding soybean cultivars. Crop Sci., 27: 927-931.