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Abstract: This paper presents a new hybrid algorithm based on adaptive PSO and enhanced
Lagrangian relaxation technique for unit commitment. The intelligent generation of initial population,
on/off decision criterion and identical unit decommiting scheme attempt to enhance the optimal
solution and reduce the overall computation time. The algorithm adoptively adjusts the inertia weight
and the acceleration coefficients in order to enhance the search process. Numerical results on systems
up to 100 generating units demonstrate the effectiveness of the proposed strategy. 
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Nomenclature: 
ACT Average Computation Time
ED Economic Load Dispatch  
EPM EP based Method
ELRM Enhanced LRM
FLAPC Full Load Average Production Cost
GAM GA based Method
LRM Lagrangian Relaxation Method
LRGAM combined LR and GA based method 
PSO Particle Swarm Optimization
PHM Proposed Hybrid Method
UC Unit Commitment
a, b, c fuel cost coefficients
C dynamic coefficient
CSTi cold start up cost of unit-i ($) 
D(λ, μ) dual function
c1 & c2 acceleration coefficients

 generator fuel cost function ($/hr) ( )t
iF P

G relative duality gap
HSTi hot start up cost of unit-i ($) 
J(P, U) primal function
Kmax iteration counter
L(P, U, λ, μ) Lagrangian function
N number of generating units 
n number of particles in the population 

  minimum and maximum real power generation of unit i respectively min max&i iP P

 real power generation of unit-i at hour-t t
iP

  load demand at hour-tt
loadP
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(P*, U*) optimal solution of the primal problem
Rt spinning reserve at hour-t
r1 & r2 uniformly distributed random numbers in the range of [0,1]

 startup cost of unit-i at hour-tt
iST

T total number of hours

 cold start hour of unit-i (hours) cold
iT

minimum down time of unit-i (hours)
down

iT

 continuously off time of unit-i (hours) off
iT

 continuously on time of unit-i (hours)
on

iT

 minimum up time of unit-  (hours)
up

iT i

  on/off status of unit-i at hour-t ,i tU

velocity of ith moving particle( )iV k

velocity limiter of the       dimension of the particle
,maxjV thj

w(k) inertia weight

  candidate solution of the ith particle ( )iX k

 minimum and maximum of the       dimension of the particle,min ,max,j jX X thj

X*(k) particle best
X**(k) global best
α decrement constant smaller than but close to 1
g a small positive number
λ and μ Lagrange multipliers
Φ(P, U) cost function to be minimized over the scheduling period 
(λ*, μ*) optimal solution of the dual problem
superscripts ini & fin initial and final values respectively

INTRODUCTION

Unit Commitment (UC) has significant influence on secure and economic operation of power systems.
Optimal commitment scheduling can save huge amount of costs to electric utilities and improve reliability by
keeping proper spinning reserves. The UC problems involve scheduling on/off states of generating units, which
minimizes the operating cost, start-up cost and shut-down cost for a given horizon under various operating
constraints. In the UC problem, the decisions are the selection of the time for each unit to be on and/or offline
as well as the unit’s economic generation level. Thus, the UC problem can be formulated as a non-linear,
large-scale, mixed-integer combinatorial optimization problem, which is quite difficult due to its inherent high
dimensional, non-convex, discrete and nonlinear nature (Wood, 1996). Over the years numerous methods with
various degrees of near-optimality, efficiency, ability to handle difficult constraints and heuristics, have been
suggested in the literature. At one end of the spectrum, there are simple and fast but highly heuristic priority
list (Happ, 1971; Baldwin, 1960) methods. At the other end, there are dynamic programming (Snyder, 1987;
Hobbs, 1982) and branch-and bound (Dillon 1978; Cohen, 1983), which are in general flexible but often prone
to the curse of dimensionality. Between the two extremes, there are Lagrangian relaxation methods (LRM)
(Lee, 1989; Cheng, 2000), which are efficient and appear to be a desirable compromise, and well suited for
large-scale UC. However, they take a large computation time when using single-unit dynamic programming
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to find the optimal path of each unit over the planning period. Moreover, they are not effective when identical
units exist. In addition the solution quality heavily depends on the initial Lagrangian multipliers and the
procedure of updating them. An enhanced adaptive LRM (EALRM) and heuristic search has been proposed
(Weerakorn Ongsakul, 2004). 

Methods such as genetic algorithms (Kazarlis, 1996; Senjyu, 2003) simulated annealing (Simopoulos,
2006), evolutionary programming (Juste, 1999) and particle swarm optimization (PSO) (Yun-Won Jeong, 2010;
Zhao, 2006; Yuan, 2009) have been applied in solving UC. Having in common processes of natural evolution,
these algorithms share many similarities; each maintains a population of solutions that are evolved through
random alterations and selection. The differences between these procedures lie in the representation techniques
they utilize to encode candidates, the type of alterations they use to create new solutions, and the mechanism
they employ for selecting the new parents. The algorithms have yielded satisfactory results across a great
variety of power system problems. The main difficulty is their sensitivity to the choice of the parameters, such
as temperature in SA, the crossover and mutation probabilities in GA and the inertia weight, acceleration
coefficients and velocity limits in PSO. There exists a need for evolving simple and effective methods for
obtaining optimal solution for the UC problem.

An adaptive PSO based hybrid algorithm involving EALRM to solve UC problem efficiently with a view
to enhance the search process and the computational speed has been suggested in this paper. The developed
strategy has been tested to demonstrate the performance on systems up to 100 generating units and the results
presented.

2. Problem Description:
The main objective of UC problem is to minimize the overall system production cost over the scheduled

time horizon under the spinning reserve and operational constraints of generator units. This constrained
optimization problem is formulated as 

Minimize 

   (1)  , 1 ,
1 1

( , ) ( ) 1
T N

t t
i i i i t i t

t i

P U F P ST U U
 

   
where

2( )t t t
i i i i i i iF P a P b P c  

Subject to 
Power balance constraint

  (2),
1

0
N

t t
load i i t

i

P P U


 

Spinning reserve constraint:

  (3)
max

,
1

0
N

t t
load i i t

i

P R P U


  

Generation limit constraints:

   (4)
min max

, ,
t

i i t i i i tP U P P U 

 1, 2, ,i N 

Minimum up and down time constraints:
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   (5),

1

0

0 1

on up
i i
off down

i t i i

if T T

U if T T

or otherwise

 
 



Startup Cost:

   (6)

down off cold down
i i i i i

i off cold down
i i i i

HST if T T T T
ST

CST if T T T

   
 

 

3. Adaptive Particle Swarm Optimization:
PSO was introduced by Kennedy and Eberhart as a modern heuristic optimizer. It is a population-based

stochastic optimization technique modeled on swarm intelligence. Swarm-intelligence, also referred to as
collective intelligence, is based on social-psychological principles and provides insights into social behavior,
as well as contributing to engineering applications. The PSO system combines a social-only model and a
cognition-only model (Kennady, 1995). 

In this approach, a population of m-individuals, called particles (X)k, is initialized with random guesses
in the problem space. Each particle represents a candidate solution to the problem at hand. These particles fly
around in a multidimensional search space with a velocity, V(k). 

These particles share their information with each other and run toward best trajectory to find optimal
solution in an iterative process. In each iteration, the velocity and the position of particles are updated by 

  
 

*
1 1

**
2 2

( ) ( ). ( 1)

( 1) ( 1)

( 1) ( 1)

i i

i i

i

V k w t V k

c r X k X k

c r X k X k

  

   

  

   (7)1,2, ,i n 

   (8)( ) ( 1) ( )X k X k V k  

The inertia weight w(k) is gradually decreased during the iterative process using the relation

   (9)( ) ( 1)w k w k  

The iterative process of updating the particle positions and velocities based on the objective function values
is continued until the desired conditions are satisfied.

The time varying inertia weight that is linearly reduced during the iterations in order to enhance the
computational efficiency is suggested in (Chaturvedi, 2008) instead of using Eq. (9). 

 (10) 
max

max
( ) fin ini iniK k

w k w w w
K

 
    

 

The time-varying acceleration coefficients are introduced in (Ratnaweera, 2004) with a view to efficiently
control the search process and convergence to the global solution. A large cognitive component and small
social component at the beginning allows particles to move around the search space instead of prematurely
moving towards the population best. A small cognitive component and a large social component during the
latter stage allow the particles to converge to the global optimum.

\
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 (11)

 

  inifininiinifin
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


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
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In the conventional PSO, a fixed velocity limiter, which prevents particles moving too rapidly from one
region in search space to another, for each dimension is usually considered as a proportion of the allowable
position range. However selecting a proper velocity limiter is difficult, especially for complex problems. A
higher velocity limiter is usually required for initial stages of the search process so that the particles can search
different regions of the solution space. On the other hand, a lower velocity limiter is preferred for the final
stages of the search process in order to obtain a better convergence. The selection of this value is nontrivial
and very important in view of obtaining better overall performance of the algorithm. The following velocity
limiter that adaptively sets the maximum allowable velocity (Nma Amjady, 2010) offers good exploration
capability and convergence behavior. 

 (12)
,max ,max ,min( )j j jV R X X  

where

 (13)
max

( ) ,ini fin ini ini fink
R R R R R R

K
     
 

In the proposed formulation, the inertia weight, acceleration coefficients and maximum velocity limiter are
adaptively changed with a view of enhancing the computational efficiency, improving the search capabilities
and obtaining the global optimal solution. 

4. Proposed Algorithm:
LR solves the UC problem by ignoring the coupling constraints temporarily and solving the problem as

if they did not exist. The LR decomposition procedure, based on dual optimization procedure, generates a
separable problem, known as dual and primal sub-problems, by integrating the coupling constraints into the
objective function through functions of the constraint violation with Lagrange multipliers, while minimizing
with respect to UC control variable. The Lagrangian function can be formulated as

                                                          ( , , , ) ( , )L P U P U    ,
1 1

T N
t t t

load i i t
t i

P P U
 

 
   
 

 (14)max
,

1 1

T N
t t t

load i i t
t i

P R P U
 

     
 

Where λ and μ are Lagrange multipliers defined as

 (15)
1 2 3 1 2 3[ , , , ], [ , , , ]T T           

The primal function is defined as

 (16)
,

( , ) ( , )
P U

J P U Min P U 

and the dual function is defined as

 (17)
,

( , ) ( , , , )
P U

D Min L P U   
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Then the dual problem is to find

 (18)
*

0,
( , ) ( , )D Max D

 
   




Suppose that (P*, U*) and (λ*, μ*) are the optimal solutions to the primal and dual problems respectively, then
it holds the following.

 (19)* * * *( , ) ( , )D J P U  

Besides it satisfies 

 (20)
* * * *

* *

( , ) ( , )

( , )

J P U D
G

J P U

  
 

Though LRM provides a fast solution, it suffers from convergence and solution quality problems. Besides,
it requires good initial estimate and skillful updating procedure for Lagrangian multipliers in order to obtain
optimal solution. 

The PSO algorithm provides global solution but is a time consuming process as it is initialized with
random starting values. Recently hybrid methods involving LR approaches and evolutionary algorithms such
as GA and PSO (Cheng, 2000; Balci, 2004) are suggested to solve the UC problem. The optimal Lagrange
multipliers are obtained by evolutionary algorithms, while the Lagrange function is solved by dynamic
programming for UC control variables. They suffer from the drawbacks of random generation of initial
population and the problems associated LR approaches. This paper proposes an adaptive PSO based hybrid
approach involving the enhanced LR (Weerakorn Ongsakul, 2004) that uses a new scheme for generating initial
population, a novel on/off decision criterion, unit classification and identical marginal unit decommitment, with
a view to over come the drawbacks of the existing approaches. 

4.1 Unit Classification:
The generation units can be classified into three types.

1. Base load units with low operation cost, high startup costs and long up/down times.
2. Intermediate load units with medium operating cost, medium startup costs and medium up/down times.
3. Peak load units with high operating cost, low startup costs and short up/down times

The base load units should not be shut down. Intermediate units could be committed during on-peak and
decommitted during off-peak periods. Finally peak load units could be frequently turned on/off.

4.2 Representation of PSO Variables:
The dual variables λ & μ are considered as the PSO variable. Each particle is therefore represented as

shown in Fig. 1

Fig. 1: Representation of a particle.

4.3 Generating Initial Population:
It is difficult to generate feasible solution when initial population is generated at random. The procedure

(Weerakorn Ongsakul, 2004) described below, intends to create a good starting solution, is used to form the
initial population.
1. Sort the generating units in ascending order of full load average production cost (FLAPC) and commit the

groups of identical units with least FLAPC one by one unit until the power balance constraint is satisfied
for each interval. Then carry out ED to obtain equal lambda, λt, at each interval.

2. Compute     for each committed unit at every interval t
i
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max

1
0, ( )t t t ti

i i i iup
i i

CST
Max F P P

P T
 

  
       

3. Obtain the highest μt among the committed units.

1 2 3[ , , , ]t t t t t
NMax     

4. Use the values obtained in steps (i) and (iii) for λ & μ to form a particle and then perturb them randomly
to generate the remaining particles in the initial population.

4.4 On/Off Decision Criterion:
The computation time of conventional LR method, while solving dynamic programming to obtain dual

solution, increases linearly with N and T. The following on/off decision criterion to solve the unit sub problem
enhances the computational speed. 

1. Solve                 subject to  
2

t
t i

i
i

b
P

c

 
 min maxt

i i iP P P 

2. Compute      for each unit-i.
t

iA

  max
, 1( ) 1 /t t t up t t t

i i i i i t i i iA F P ST U T P P       

3. If           , commit the unit-i,           .0t
iA  , 1i tU 

Else decommit the unit-i,            ., 0i tU 

4.5 Identical Marginal Unit Decommitment:
The conventional LR method simultaneously commits/decommits a group of units that have identical

characteristics. This will lead to suboptimal solution because committing one unit at a time will be less
expensive than committing a whole group of units. The following procedure decommits one unit at a time to
avoid over commitment. 
1. Set t = 1.
2. Sort the committed units excluding the base load units in the descending order of the negative value of 

       to obtain the sorted set        .
t

iA tSS

3. Set the first unit in the sorted set be         . If the       has only one unit, go to step-viii. 
tCU tSS

4. Calculate the excess spinning reserve of the hour-t. 
5. If the excess spinning reserve is less than maximum generation of         , go to step-viii. 

tCU

6. If decommitting          violates its minimum uptime constraint, go to step (viii). 
tCU

7. Decommit         and delete it from the set        and update           and return to step-iii 
tCU tSS ,i tU  

8. If                  and return to step-ii. , 1t T t t  

4.6 Economic Load Dispatch:
The economic load dispatch is an intensive computational part in UC problem. It is solved using lambda

iteration method (Wood, 1996) based on the principle of equal incremental cost as the fuel cost is represented
by a quadratic cost function. Lambda iteration method is carried out for various generating unit schedules of
each particle using the expression. 
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 (21)
2

t
t

i
i i

P
a b






4.7 Cost Function:
The PSO searches for the optimal solution by minimizing a cost function. The relative duality gap, G, Eq.

(20), is considered as the cost function to be minimized while searching for the best particle in the proposed
approach. 

4.8 Stopping Criteria:
The process of generating new particles can be terminated either after a fixed number of iterations or if

there is no further significant improvement in the global best solution.

4.9 Algorithm:
The flow of the proposed hybrid algorithm (PHA) for solving the UC problem is outlined. 

1. Read the input data of the UC problem
2. Choose population size, m, and other PSO parameters
3. Initialization 
a Set k = 0
b Classify the units into base, intermediate and peak load units following the procedure described in section

4.1.
c Generate initial population consisting m particles following the scheme outlined in section 4.3.
d Randomly generate m initial velocity values.

4. k = k +1
5. For each particle, perform the following.
a Solve the unit subproblem using the on/off decision criteria described in section 4.4.
b Check whether the dual solution is feasible, that is, check for constraint violation of Eqs. 2 and 3. If not

feasible, randomly alter the particle till it becomes feasible.
c Carryout identical marginal unit decommitment procedure explained in section 4.5.
d Carry out the economic load dispatch.
e Calculate the primal cost, J(P, U), dual cost, D(λ, μ) and relative duality gap, G.
6. Search for particle best and global best positions based on the relative duality gap G, which is to be

minimized and store them.

7. Obtain values for               and          using Eqs. 10, 11 and 12.1 2( ), &w k c c ,maxjV

8. Update particle velocity subject to the respective velocity limit and positions using Eqs. 7 and 8.
9. Check for convergence. If converged, stop and print the optimal solution (P*, U*) corresponding to the

global best position. Otherwise, go to step-4.

Table 1: Comparison of fuel cost
Number of units Best Fuel Cost ($)

-----------------------------------------------------------------------------------------------------------------------------------------
LRM [11] EALRM [10] GAM [11] EPM [14] LRGAM [9] PHA

10 565825 565508 565825 564551 564800 563938
20 1130660 1126720 1126243 1125494 1122622 1123607
40 2258503 2249790 2251911 2249093 2242178 2245557
60 3394066 3371188 3376625 3371611 3371079 3366676
80 4526022 4494487 4504933 4498479 4501844 4482826
100 5257277 5615893 5627437 5623885 5613127 5602388

5. Simulation Results:
The PHA has been tested on systems with 10, 20, 40, 60, 80 and 100 generating units. The unit data and

load demand data for 24 hours for the system with 10 units are given in Table 1 and 2 respectively (Yun-Won
Jeong, 2010). The data for other larger systems are obtained by duplicating the data of 10 unit system and
adjusting the load demand in proportion to the system size. The population size is chosen as 30 for all the test
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Fig. 2: Comparison of ACT.

problems. The maximum number of generations for convergence check is taken as 600, 1200, 2500, 3000,
5000 and 6000 for 10,20,40,60,80 and 100 unit system respectively. The results of the PHA is compared with
LRM (Kazarlis, 1996), EALRM (Weerakorn Ongsakul, 2004), genetic algorithm based method (GAM)
(Kazarlis, 1996), evolutionary programming based method (EPM) (Juste, 1999) and combined LR and GA
based method (LRGAM) (Cheng, 2000) in order to validate the results in Table 1. The analysis of this table
obviously indicates that the PHA offers global optimal solution that corresponds to lower production cost than
that of other methods. The PHA is therefore ideally suitable for practical implementations.

The average computation time (ACT) of the PHA is graphically compared with evolutionary algorithms
of GAM, EPM and LRGA in Fig. 2. The computation times given in articles (Kazarlis, 1996) and (Juste, 1999)
for GAM, EPM and LRGA were measured before a decade and hence are suitably scaled down using a factor
of 0.5 with a view to compare with the computation times of PHA executed using the present day fast
computers. From this figure, it is very clear that the PHA is reasonably faster than the other two methods. 

7. Conclusions: 
A hybrid algorithm based on PSO and enhanced LR technique has been proposed for unit commitment

in this paper. This method exploits the advantages of both the PSO and enhanced LR and provides global
optimal solution. The results on various test systems clearly indicate the effectiveness of the proposed
algorithm. This method is ideally suitable for practical implementations. 
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Appendix:

Table 1: Unit data for the 10 unit system
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Pmax 455 455 130 130 162 80 85 55 55 55
Pmin 150 150 20 20 25 20 25 10 10 10
a 1000 970 700 680 450 370 480 660 665 670
b 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79
c 0.00048 0.00031 0.002 0.00211 0.00398 0.000712 0.00079 0.00413 0.00222 0.00173
Tup 8 8 5 5 6 3 3 1 1 1
Tdown 8 8 5 5 6 3 3 1 1 1
HST 4500 5000 550 560 900 170 260 30 30 30
CST 9000 10000 1100 1120 1800 340 520 60 60 60
Tcold 5 5 4 4 4 2 2 0 0 0
Initial status 8 8 -5 -5 -6 -3 -3 -1 -1 -1
FLAPC 18.57 19.533 22.245 22.005 23.122 27.455 34.059 38.147 40.582 40.067
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Table 2: Load demand data
Hour 1 2 3 4 5 6 7 8 9 10 11 12
Load (MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500
Hour 13 14 15 16 17 18 19 20 21 22 23 24
Load (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800
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