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Abstract: In this paper, a modification of He's variational iteration method by using r terms of
Taylor's series is applied for finding the solution of Kolmogorov-Petrovskii-Piskunov and Klein-
Gordon equations with logarithmic nonlinearities. This modification cause to the new application of
the variational iteration method for equations with logarithmic nonlinear part. To show the efficiency
of the method, several examples are presented.
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INTRODUCTION

Mathematical modeling of many physical systems leads to nonlinear partial differential equations in various
fields of physics and engineering. That's why recently nonlinear partial differential equation has attracted
scientists' attention. Several methods were proposed to solve partial differential equations which are mostly
applicable just for linear or polynomial's nonlinearity type equations. In this work we considered the variational
iteration method (VIM), which is a useful instrument for solving partial differential equations with polynomials
nonlinearity. This method first proposed by He (2000, 1997, 1999, 1998) and was applied for solving many
kinds of situations. We have made a modification on the (VIM) in order to apply it for those PDE's with
logarithmic nonlinearities. In fact the logarithmic part is replaced with an appropriate polynomial. To show the
efficiency, we employed this modified method for solving the Klein-Gordon equation (Yusufoulu, E., 2008)
and the Kolmogorov-Petrovskii-Piskunov (KPP) equation (Rottschäfer, V. and C.E. Wayne, 2001; Kolmogorov,
A.N., 1973), with logarithmic nonlinear parts, which are two applicable equations. The convergence of
variational iteration method was discussed in (Zaid, M., 2010).

Klein-Gordon was named after the physicists Oskar Klein and Walter Gordon, who in 1927 proposed that
it describes relativistic electrons. 

One of the best known model equations with dissipation is the equation suggested in 1937 by Kolmogorov,
Petrovskii and Piskunov. This equation describes such phenomena as combustion (physics) and propagation
of concentration waves. This method could be used for any nonlinear partial differential equations involving
logarithmic nonlinearities. The results reveal that the method is very effective and convenient.

In section 2 variation iteration method is described, section 3 is devoted to application of this method for
solving Kolmogorov-Petrovskii-Piskunov and Klein-Gordon equations with logarithmic nonlinearity and in
section 4 numerical examples are presented.

Variational Iteration Method:
To illustration the basic concepts of the variational iteration method (VIM) we consider the following

general nonlinear system:

   (1)

Where L is the linear operator and N is the nonlinear operator, and g(x, t) is the inhomogeneous term. In the
variational iteration method, where a correction function for (1) can be written:
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   (2)

It is obvious that the successive approximation un, n > 0 can be established by determining λ, a general
Lagrange multiplier, which can  be identified  optimally via  the  variational theory(Inokuti,  M., 1978). The 

function      is a restricted variation, which means            . Therefore, we first  determine  the  Lagrange nu 0nu 

multiplier λ that will be identified via integration by parts. The successive  approximations            of the 1( , )nu x t

solution u(x,t) will be readily obtained upon using the Lagrange multiplier obtained by using any selective
function u0(x,t) .

Main Part:
In this section we introduce a new method for solving nonlinear PDE's. We will consider, amongst others,

the nonlinear Klein-Gordon equation (Dmitrievich, A., 2004), of the form

   (3)

where F is a nonlinear part of equation that could be logarithmic type.

Theorem 3.1:
Taylor's theorem with Lagrange remainder (Kincade, D., W. Cheney, 1996):

Suppose that                  and if        exists on (a,b) then for any points c and x in [a, b],[ , ]nf C a b ( 1)nf 

 

Where, for some points ξ between c and x

 

In this method, we use Taylor's polynomial with remainder instead of a nonlinear part F(u), as follows:

 

such that

 
where

 

As a result, we obtain the following formula
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by omitting the remainder we consider a new Klein-Gordon equation with polynomial nonlinearities:

 

Therefore by means of (VIM) we get to the following correctional function

   (4)

Making the above correction functional stationary, we have

 

Which yields the following stationary conditions:

 

The general Lagrange multiplier, therefore, can be identified as

 

By noting that            and using u0(x, t) as a selective function, u(x, t)  will be obtained.0nu 
          
The Kolmogorov-Petrovskii-Piskunov equation which is

 

where F is a nonlinear part of equation that could be logarithmic type.
We use Taylor's polynomial with remainder instead of a nonlinear part F(u), as follows:

 

such that

 

Where
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As a result, we obtain the following formula

 

by omitting the remainder we consider a new KPP equation with polynomial nonlinearities:

 

Therefore by means of (VIM) we get to the following correctional function

   (5)

Making the above correction functional stationary, we have

Which yields the following stationary conditions:

 

The general Lagrange multiplier, therefore, can be identified as

By noting that            and using u0(x, t) as a selective function, u(x, t) will be obtained.0nu 

Numerical Examples:
Example 4.1:

We consider the following nonlinear Klein-Gordon equation:

  (6)

subject to initial conditions:

The exact solution is:
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To solve (6), we use iterative formula (4) to find the iteration for (6) given by:

To get the iteration, we start with an initial approximation u0(x,0)=u(x,t)+tut(x,0) and we obtain the
following successive approximations by considering r =0,  as follows:

 

 

And so on.
Graphs of g1(x, t) and g2(x, t) are shown in Figure 1 and Figure 2 respectively. 

Fig. 1: The graph of g1(x, t).

Fig. 2: The graph of g2(x, t).
Example 4.2:

We consider the following Kolmogorov-Petrovskii-Piskunov equation:

  (7)
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Subject to the initial condition:

The exact functional separable solution is:

To solve (7) we use iterative formula (5) to find the iteration for (7) given by:

To get the iteration, we start with an initial approximation u0(x,t)=e3+2x and we obtain the following successive
approximations by considering r=0, as follows:

And so on.
Graphs of g1(x, t) and g2(x, t) are shown in Figure 3 and Figure 4 respectively.

Fig. 3: The graph of g1(x, t).

Conclusion:
In this work we employed variational iteration method and Taylor's series to find a solution for Klein-

Gordon and  Kolmogorov-Petrovskii-Piskunov equations with logarithmic nonlinearities. We used r terms of
Taylor's series instead of nonlinear parts. It gives us an acceptable solution, even by considering a small
amount of r. This method could be used as an efficient instrument for many kinds of nonlinear partial
differential equations.
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Fig. 4: The graph of g2(x, t).
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