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Abstract: A modified movable object tracking algorithm which uses the flexible Metric Distance
Transform kernel and FCM Classifier is proposed and tested. The target shape which defines the dn

Distance Transform is found based on conventional statistical parameters as feature vector extraction
and Fuzzy C-Mean (FCM) classifier to differentiate tracked target from background. This replaces the
more usual Epanechnikov kernel (E-kernel), improving target representation and localization without
increasing the processing time, minimizing the similarity measure using the Bhattacharya coefficient.
The algorithm is tested on several image sequences and shown to achieve robust and reliable frame-
rate tracking.
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INTRODUCTION

Real-time object tracking is the critical task in many Computer vision applications such as surveillance
Greiffenhagen et al.,, (2001) perceptual user interfaces Bradski, (1998), augmented reality Ferrari et al., (2001),
smart rooms Intille et al., (1997), object-based video compression Bue et al., (2002) and driver assistance
Handmann et al., (1998). Two major components can be distinguished in a typical Visual tracker. Target
Representation and Localization is mostly a bottom-up process which has also to cope with the changes in the
appearance of the target. Filtering and Data Association is mostly a top-down process dealing with the
dynamics of the tracked object, learning of scene priors, and evaluation of different hypotheses. The way the
two components are combined and weighted is application dependent and plays a decisive role in the
robustness and efficiency of the tracker. For example, face tracking in a crowded scene relies more on target
representation than on target dynamics, while in aerial video surveillance, e.g., Wildes et al, (2001) the target
motion and the ego-motion of the camera are the more important components. Therefore, it is desirable to
ensure that the tracker is as efficient as possible. Kernel-based density estimation techniques for Computer
vision have attracted a great deal of attention. One example is the mean shift (MS) technique which has been
applied to image segmentation, visual tracking, etc. (Greiffenhagen et al.,, 2001; Bradski, 1998; Ferrari et al.,
2001; Intille et al., 1997; Bue et al., 2002; Handmann et al., 1998; Wildes et al, 2001). MS is a versatile
nonparametric density analysis tool introduced in (Jamasbi, et al., 2007; Comaniciu and Meer, 2002; Comaniciu
et al., 2003). In essence, it is an iterative mode detection algorithm in the density distribution space. The MS
algorithm moves to a kernel-weighted average of the observations within a smoothing window. This
computation is repeated until convergence is attained at a local density mode. This way the density modes can
be elegantly located without explicitly estimating the density. Cheng Comaniciu and Meer, (2003) notes that
MS is fundamentally a gradient ascent algorithm with an adaptive step size. Fashing and Tomasi, (2003) show
the connection between MS and the Newton–Raphson algorithm. They also discover that MS is actually a
quadratic bound optimization both for stationary and evolving sample sets. MS is also a Wxed-point iteration
procedure. Since Comaniciu et al. Bradski, (1998) Wrst introduced MS-based object tracking, it has proven to
be a promising alternative to popular particle altering based trackers (Cheng, 1995; Bhattacharyya, 1943). A
number of improvements to the method have been reported in the literature. In Ferrari et al., (2001), the
selection of kernel scale via linear search is discussed. Intille et al., (1997) reformulates the tracking framework
as a gen- eral form of joint feature-spatial distributions Wildes et al., (2001). Compared with the approach of
Comaniciu et al., the advantage is that spatial structure information of the tracked region is incorporated. In
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Bue, et al., (2002), multiple spatially distributed kernels are adopted to accurately capture changes in the
target’s orientation and scale. Another approach is developed in Stauffer and Grimson, (1999) for the same
purpose. Furthermore, Swain and Ballard, (1991) present a theoretical analysis of the similarity measure and
arrive at a criterion, leading to kernel design strategies with prevention of singularity in kernel visual tracking.
All the above mentioned trackers adopt MS or similar optimization strategies. Despite successful applications,
MS trackers require that the displacement of the tracked target in consecutive frames to be small because the
search is initialized by the detected location of the target in the previous frame. Larger inter- frame
displacements will lead the tracker to become trapped in spurious locations in the multimodal density
distribution space because MS is a local optimization method. So in many situations, however, we seek the
global mode of a density function. The standard MS tracker assumes that the initialization point falls within
the basin of attraction of the desired mode. On the other hand, in basic MS algorithm, the feature histogram-
based target representations are regularized by spatial masking with a descent isotropic kernel. In most
instances, the target does not have radial symmetry, so the use of a E-kernel includes foreground as
background, or background as foreground pixels, or both. So non-included target pixels are weighted. Hence,
the local and global modes may not correspond and the tracker is likely to fail. The main contribution of the
paper is to introduce a new framework for efficient tracking of rigid objects. We show that how such a kernel-
based object tracking algorithm can be improved by using a kernel based on the da Distance Transform. 
Statistical mean and standard deviation are used to obtain feature vector on the target in first frame to use
Fuzzy C-Mean (FCM). The central of target localization in each frame is estimated by MS and then FCM is
applied to differentiate the target from background. Weighting of segmented target pixels is done by metric
Distance Transform which is used to estimate of target localization for next frame. We present experiments
that demonstrate the superior performance of this approach in comparison with the basic MS algorithm or self-
FCM classifier by measuring accuracy, robustness and stability. The remainder of the paper is organized as
follows. Section 2 explains the kernel density estimating and means shift analysis. Fuzzy C-Mean (FCM)
classifier is explained in Section 3. Section 4 introduces metric distance transforms. Section 5 explains the
experimental settings and the experimental results will be reported. Finally, a conclusion and discussion are
presented in Section 6.

Kernel Density Estimation:
Motion of the target in two sequential single images describe with good approximation using mean shift

algorithm Comaniciu et al., (2003) At the first stage, we make a model of the target using weighing
Histogram, which exploits both color and location data. The region of target is supposed as elliptic in the first
frame then points inside of elliptic are normalized to unit circle with 0 center. Marginal pixels are less
important than central pixels because they are influenced by occlusion and interference with background. In
order to consider this importance, we allocate a weight to each pixel based upon distance of that pixel from
center. Therefore weighing Histogram is obtained as below: 
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on which is most similar to targeted one. We search our target in new frame around the target location in
previous frame and estimate most similarities as new location of the target because target motion in two
sequential frames is not considerable. This exhaustive search is time consuming, so utilizing of proper recursive
algorithm is recommended. We should consider another parameter other than target location. This parameter
is object scale (h) which modifies elliptic size in each frame. We define similarity criteria for comparing two
Histograms. In this paper we use Bhattacharya distance which defined below:
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around      will be calculated through Taylor expansion:0y

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Recalling (4) results in
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We should maximize second term in (5) in order to have maximum similarity.
We consider this term as Kernel estimation k(x) of a probability density function and also use mean shift

algorithm for calculating maximum of this equation. In this algorithm current location moved to the new one
as below:
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Background-Weighted Histogram:
The background information is important for at least two reasons. First, if some of the target features are

also present in the background; their relevance for the localization of the target is diminished. Second, in many
applications, it is difficult to exactly delineate the target, and its model might contain background features as
well. At the same time, the improper use of the background information may affect the scale selection
algorithm, making impossible to measure similarity across scales, hence, to determine the appropriate target
scale. A good approach is to derive a simple representation of the background features and to use it for
selecting only the salient parts from the representations of the target model and target candidates Comaniciu
et al., (2003) 

Let              (with   ) be the discrete representation (histogram) of the background in the feature 

space and     be its smallest nonzero entry. This representation is computed in a region around the target. The 
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extent of the region is application dependent and we used an area equal to three times the target area. The
weights:

  (8)
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are similar in concept to the ratio histogram computed for back projection Swain and Ballard, (1991). However,
in our case, these weights are only employed to define a transformation for the representations of the target
model and candidates. The transformation diminishes the importance of those features which have low vu, i.e.,
are prominent in the background. The new target model representation is then defined by:
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The target localization algorithm is described as follow:
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3- Obtain the weight wi using (6).

4- Finding the new target location using (7).
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The fuzzy c-mean algorithm:
The fuzzy c-means (FCM) algorithm was introduced by J.C. Bezdek, (1981)]. The idea of FCM is using

the weights that minimize the total weighted mean-square error:
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The FCM allows each feature vector to belong to every cluster with a fuzzy truth value (between 0 and

1), which is computed using Equation (13). The algorithm assigns a feature vector to a cluster according to
the maximum weight of the feature vector over all clusters.
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Repeat Steps 3)–5) till termination. The termination criterion is as follows:

 (14)

Where      is the Euclidean norm, J is a mean square error, and is a small number that can be set by the
user. 

Kernel Based on the Metric Distance Transform:
The equivalence of the mean shift procedure to gradient ascent on the similarity function holds for kernels

that are radially symmetric, non-negative, non-increasing and piecewise continuous over the profile S.rastegar
et al., (2009). A radially symmetric kernel can be described by a 1D profile rather than a 2D (or higher order)
image. The usual choice for K is the optimal Epanechnikov kernel (E-kernel) Bhattacharyya, (1943) that has
a uniform derivative of G=1 which is also computationally simple. However, in tracking an object through a
video sequence and applying the mean shift algorithm to move the position of the target window, the bounds
of the domain R2 are altered on each successive application of the algorithm. In most instances, the target does
not have radial symmetry, so the use of an E-kernel includes foreground as background, or background as
foreground pixels, or both. Depending on the shifting of pixels between background and foreground, and on
the similarity of the two color distributions (in a worst case the background has similar properties to the
target), then multiple modes are formed in the pdf. In this case local and global modes don't correspond and
the tracker is likely to fall. Therefore, our contribution is to use a distance transform (DT), matched to the
shape of the tracked object, as a kernel function. Although this kernel does not change shape through the
sequence, it can change size, scaling as the subject expands or contracts in the camera field of view. For the
DT each foreground pixel is given a value that is a measure of the distance to the nearest edge pixel. The edge
and background pixels are set to zero. We use the normalized Metric da distance Transform (MDDT) rather
than the true Euclidean distance and isotropic descent kernel, as it is an efficient approximation. The MDDT
kernel better represents the color distribution of the tracked target, yet retains the more reliable centre
weighting of the radially symmetric kernels. Let P be a binary picture (defined on grid G) in which

 (15)

Are proper subsets of G. For any grid metric da, distance transform of P associates with every pixel p of 
<P> the da distance from p to <P>We assume that pixels of the background component (i.e., containing all
pixels outside of the rectangular region G) all have value 0. The d4 or d8 distance transform of p (and others
– see later) can be computed by performing a series of local operations while Scanning Gtwice. For any p0
G let B(p) (“before”) be the set of pixels (4-or 8- ) adjacent to p that precedes p when G is scanned in
standard order:

If p has coordinates (x,y), B contains (x, y + 1) and (x ! 1, y), and if we use 8-adjacency it also contains (x
! 1, y + 1) and (x + 1, y + 1). For first scan we have

 (16)

Compute f1(p) for all p0G in a single standard scan of G; for each p, f1 has already been computed for all
of the qs in B(p) (If p is on the top row or in the left column of G, some of these qs are outside G with f1=
0.)
And for second scan we have:

 (17)

Compute f2(p) for all p0G in a single reverse standard (i.e., right-to-left, bottom-to-top) scan of G (note: each
p, f2 has already been computed for all of the qs in A(p) or is known because they are outside of G).
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In this work, d8 transform is applied to the target which separated from the background by FCM classifier.
This weighting can increase the accuracy and robustness of representation of the pdf’s as the target moves,
excluding the peripheral pixels that occur within a radially symmetric window. Applying the MDDT kernel
to the region of interest, and weighting the colour distributions accordingly, we determine whether the
exclusion of the erroneous background pixels, for example, from the density Estimate of the target, and giving
increased weighting to those more reliable pixels towards the centre, will outweigh the possibility of forming
false modes. Of course, although the MDDT may produce false modes, this also occurs with radially symmetric
kernels due to badly defined densities. As the scale of the target may change, the size of the Kernel is adapted
accordingly. When the exact location of the target is found, we measure the similarity criterion for three values

                         and its maximum is named           (Scale for current frame) is computed as bellow: .9 1 1.1 prevh h  .opt newh h

 (18)

The best result,         yielding the largest Bhattacharyya coefficient is retained.newh

In applying the MDDT kernel to the mean shift procedure, due to the object shape changes in the long
or short term, we have two options. First we can define the MDDT on the basis of the first frame, and use
this for the whole sequence. Second we can segment the subsequent frame and apply a different kernel
weighting. The algorithm described above applies to the first option, which is used for the experimental results
in the next section. To modify or update for each model frame, for example, the segmentation and MDDT
computation code is included inside the outer repeat-until loop.

Adaptive kernels have also been used by Porikli and Tuzel, (2003). Like our approach, their algorithm
does not maintain fully the mean-shift convergence conditions Comaniciu and Meer, (2002). However, the
MDDT presented here satisfies it partly with its decreasing Profile. Practical tests show that even if theoretical
convergence conditions are not fully satisfied, convergence is achieved.

Experimental Results:
In this section, we present the evaluation of the modified mean shift object tracking using the MDDT-

kernel in comparison with the radially symmetric E-kernel. We track moving objects, a static object with a
moving camera and a combination of the two. All the tests were carried out on a Pentium 4 CPU 3.80 GHz
with 2GB RAM. So that it would be reasonable to assume a considerable increase in processing speed if re-
implemented with more advanced sets. In the first experiment, we compare the tracking of a moving car in
a video sequence that includes 368 frames of 480´ 640 pixels, comparing the normal E-kernel with the MDDT

Kernel. Fig.1shows the value of iteration computed for each frame. In Fig.2 distance function which
calculated by the Bhattacharyya coefficient (Eq. 2) is presented. The peak in the E-kernel data is 0.636 which
increases to the 0.7 in MDDT. Fig.3 (a) and (b) show some examples, frames 1, 35, 60 and 75, from the
whole sequence. In frame 60 some of the original car is still contained within the window, but after the 75nd
frame, the car is lost completely in Fig.3 (a), as the tracker finally latches on to another crossing car. This
demonstrates that the inclusion of the background of the tracked car (in this case another car) includes pixels
that are similar in color space, so that the algorithm fails to identify the correct distribution in succeeding
frames and hence follows the wrong target. Fig.4 shows the similarity surfaces made by candidate models in
frame 54 with E-kernel and MDDT kernel, respectively. Initial point is center of target model in frame of 50
and extend of simulation is 60×60.

In terms of complexity, computed from 20 executions of the program, the average selected frames per
second of the MDDT kernel and the E-kernel are 12.33 and 17.15 respectively, while This time length to 23.42
when  FCM  is used for target tracking. The maximum numbers of iterations within a single frame are 13 and
20, respectively. The average times per frame are roughly comparable because although the speed of
convergence is quicker with the MDDT-kernel, additional processing is required to segment the target window,
in order to get more robust and accurate tracking. To further test the robustness of the MDDT-kernel algorithm
and convergence properties, the contrast of input selected frames is increased which can result by different
environment illumination. From Table 1, which shows quantitative results, the MDDT kernel algorithm needs
on average only 7.4 iterations to converge to the optimal result, but the E-kernel needs 13  iterations on
average. Again, the greater complexity of computing the MDDT kernel is balanced by the greatly reduced
number of iterations, so the processing speed per frame is comparable. As it shown Self-FCM classifier among
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three methods has most consuming time.

Fig. 1: Iteration Value for selected Frames

Fig. 2: The Bhattacharya distance values, for the crossing car

Fig. 3: Tracking the crossing car
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Fig. 4: The similarity surfaces (values of the Bhattacharyya coefficient) for frame 54. The initial points and
convergence points are shown. (a) The result from the E-kernel. (b) The result from the MDDT-
kernel.

Fig. 5: (a) Original image. (b) Intensity of pixels in selected frame is increased which can result by different
environment illumination.

Table 1: Comparison results of consuming time in three methods
Method Average iterations CPU time (sec./frame)

-------------------------------------------------------------------------------------------------
max min mean

E-kernel 13 0.4405 0.3006 0.3705
FCM - 0.7654 0.4819 0.6236
Proposed  Method 7.4 0.3290 0.2404 0.2847

Conclusions:
We have described the implementation of a scaling, normalized Metric d8 distance kernel as a weighting

and constraining function applied to the mean shift tracking algorithm that maximizes the similarity between
model and candidate distributions in color space. The tracked target for weighting is differentiated from
background by FCM classifier in each frame. In comparison with the E-kernel, used as an exemplar of a
radially symmetric function, application of the MDDT-kernel can achieve better results because it can reject
false nodes that are caused by the inclusion of changing background pixels. The processing time is sufficiently
small for real time operation, as the added cost of foreground-background separation is offset by the more
rapid finding of the correct mode. The results presented on a number of video sequences show that the MDDT-
kernel algorithm performs well in terms of improved stability, accuracy and robustness on camera motion and
partial occlusions.
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