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Abstract: In this article, we consider the Bounded Cumulative Hazard (BCH) model that is more
appropriate than mixture cure model in case of cancer clinical trials when the population of interest
contains long-term survivors or cured. We propose this cure rate model based on the Weibull
distribution with interval censored data. Maximum likelihood estimation (MLE) method is proposed
to estimate the parameters within the framework of expectation-maximization (EM) algorithm, Newton
Raphson method also employed. The analysis showed that the cure fraction cannot be obtained
analytically, but may be obtained from the numerical solution of the estimated equations. A simulation
study is also provided for assessing the efficiency of the proposed estimation procedure. 
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INTRODUCTION

Survival models that incorporate a cure fraction are called cure rate models. These models are being
widely used in analyzing survival data from clinical trials; especially cancer clinical trials where a significant
proportion of patients are cured.

The simplest cure rate model was constructed by Boag in 1949 and later developed by Berkson  and Gage
in 1952 which is called mixture cure rate model. In this model, the survival at any given time is equal to the
proportion of those that are cured (π) plus those that are not cured (1-π), but who have not yet died or, in the
case of diseases that feature asymptomatic remissions, have not yet re-developed signs and symptoms of the
disease.

The mixture cure model equation is: Sp (t) = π +(1-π)Su (t).

Where Sp (t) and Su (t) are survival functions for the entire population and the uncured patients
respectively.

In this model, the survival function of the uncured patients Su(t) can be estimated parametrically or non-
parametrically, which leads to parametric or semi-parametric survival models respectively. In parametric cure
models we assume a particular distribution for the failure time distribution of uncured patients such as
Exponential, Weibull, Gompertz, Generalized F and Log normal distributions. Because of its historical
significance and important properties, the Weibull distribution is one of the most common parametric models
which has a broad range of applications in survival analysis, Ahmed and Noor, (2010) and Cantor, (2003),
therefore we will consider this distribution for the subsequent analysis.

The  Weibull  distribution  has  a survival function                 and the probability density function, ( ) t
pS t e  

                       for t > 0. Here λ > 0 is the scale parameter and γ > 0 is a shape parameter.1( ) ( ) tf t t e    

With rapid developments in medical and health sciences, an alternative model to mixture cure model was
proposed to account the drawbacks of mixture model that have been discussed by Chen, et al., in 1999, this
alternative model developed by Yakovlev et al., in 1993 and known as the bounded cumulative hazard (BCH)
model which has the following particular features:
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i) It is derived from a natural biological motivation.
ii) It has proportional hazard structure through the cure rate parameter.
iii) It is extremely computationally attractive.
iv) It has a mathematical relationship with the mixture cure rate model.

BCH Model:
In the BCH model which is also known as the promotion time cure model, it is assumed that for a cancer

patient in the treated group after the initial treatment the number of cancer cells  (often called clonogens) for
that patient left active, these clonogens grow rapidly to produce a detectable cancer mass later on which may
replace the normal tissue (cancer relapse), the number of clonogens N follows a Poisson distribution with mean
θ, (Chen, M.H., 1999). Such that:

N~Pois (θ), where                    .
!

( ; )
N e

f N
N






Let the variables Zi ,i=1,2,..N, denote the ith clonogen time to produce a detectable cancer mass, Zi are
assumed to be independent of N and have a cumulative distribution function (c.d.f.) F(t) = P(Z#t), giving the
probability of development a detectable tumor cancer mass by duration, Chen et al., (1999). It will often be
convenient to work with the complement of the c.d.f, the survival function Sp (t) = P(Z>t) = 1-F(t) which gives
the probability of being alive at duration t or more generally the probability that the event of interest has not
occurred by duration, t Cooner, et al., (2007). Note that F(0) = 0 and, F(4) = 1so that Sp (0) = 1 and Sp (4)
= π the plateau value. The hazard function corresponding to this model is

( )
( ) ,

( )p

f t
h t

S t


where f(t) is the density function corresponding to F(t).
There is biological evidence that the majority of recurrent tumors are arising from a single cancer cell,

Tsodikov et al., (2007). Thus, the time it takes the cancer to relapse can be defined by the random variable
T = min {Zi, 0# i # N}, where P(Z0 = 4) = 1 and Zi is independent of N. Thus, the survival function for the
entire population can be defined as follows:

Sp (t) = P [There is no detectable cancer mass by the time t]
      = P(N =0) + P(Z1 > t, Z2 > t..., ZN > t, N$ 1)
      = exp (-θ) + [P(Z1) > t)P (N = 1)] + [P (Z1 > t)P (Z2 > t)P (N = 2)]+
                    [P(Z1) > t)P (Z2 > 1)P (Z3 > t)P (N =3)] +...+
                    [P(Z1) > t)P (Z2 > t) ... P(Zn > t)P (N = n)]
      = exp (-θ) + [S(t1) P (N = 1)] + [S (t)2 P (N=2)]+[S(t) (N = 3)]+ ...
                  + [S(t)nP(N=n)]

1
exp( ) [ ( ) ( )]

N n

n
S t P N n


   

Since N - Pois (θ) then
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  (1)

(See Aljawadi et al., 2011)

Since F(4) = 1 and S(4) = exp (-θ) model (1) is an improper survival function. However, the cure fraction
based on BCH model can be defined as follows:

  (2)
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lim exp( ( ))

exp( ).
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 
Note that when θ64 then π60, whereas as θ60 then π61. 

Parametric Estimation under Interval Censored Data.:
Interval censoring occurs when the event of interest is known only to occur within a given period of time,

where the time ti, i = 1,...,n, until the occurrence of the interested event for each individual is only known
(whether it occurs) that it belongs to the interval between pre assigned visits points, i.e. between the visit at
time Li and the visit at time Ri, the survival time t is not exactly known, it is only known that the interested
event has occurred within the interval (Li, Ri. Both left and right censored data are special cases of interval
censored data, where in left censored data the lower endpoint L is 0 and in right censored data the upper
endpoint R is 4, Davison, (2006).

In case of interval censored data S(ti) = S(Li) - S(Ri) (Klein, J.P., 2003). Thus, for left censoring S(ti) =
S(0)-S(Ri) = 1 - S(Ri), since S(0) = 1, and similarly for right censoring S(ti) = S(Li) - S(4) = S(Li) since S(4)
= 0. Regarding uncensored individuals ti is not observed, therefore, we will use the Mid-point estimation for
ti.

In parametric maximum likelihood estimation method the survival function Sp (.) and the probability
density function f(.) for the entire population are known given that θ is unknown, let αi be an indicator of
censoring with zero if ti is censored time and one otherwise, and ci is an indicator of cure status of the ith

patient,  namely ci is zero if the  patient is cured and one otherwise, i= 1,2,...,n . Obviously, if αi = 1, then 
ci = 1, but if αi = 0 then is not observed and it can be one or zero. We assume throughout this analysis that
the censoring is independent of failure times.

Given αi and ci, i.e. the complete data are available, then the log likelihood function can be written as
follows:

1 1
1log [{ ( ).(1 )} ] .[{ } .{(1 ). ( )} ]i i i i ic a c cn

c i i u il f t S t    
   

 
Based on the survival function and the probability density function corresponding to Weibull distribution,

the log-likelihood function can be rewritten as follows:
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This can be simplified and expressed by:

  (3)
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The solutions of                     and           are the desired estimates of θ, λ and γ. Where0, 0c cl l
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Equations (5) and (6) need to be solved numerically to find λ and γ.
However, since the cure status  is not fully observed then we need to implement the expectation

maximization (EM) algorithm to estimate the desired parameters.
Before the implementation of the EM algorithm let us define gi as the expected value of ci for the ith

patient to be uncured conditional in the current estimates of αi and the survival function of uncured patients
Su(ti), this definition proposed by [10] where:
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For censored individuals, i.e. αi = 0, then 
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For simplicity we can define pi as the probability of cured, such that
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EM Algorithm:
The EM algorithm composed of two steps; the expectation step (E-Step) followed by the maximization

step (M-step), where the E-step calculates the expectation of the log likelihood function defined in equation
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(3) for the given values of αi , ci and [Li , Ri]. Suppose that we have  individuals where for i=1,...,m then αi

and ci are observed and both are equal to 1, while for i=m+1,...n, αi  is observed and equal to 0 but ci is not
observed and need to be estimated, so the expected value of the log likelihood function can be written as
follows:

1 2( / , , ) ( / 1, 1,[ , ],1 ) ( / 0,[ , ], 1 ),c i i c i i i c i iE l c t E l c L R i m E l L R m i n           
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It is clear that the expected value of the log likelihood function cannot be calculated unless the expressions 
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ci for the (n-(m+1)) censored individuals is not provided. Thus, the three expressions are called the sufficient
statistics, where it is necessary to find the expected value for these sufficient statistics.

It follows that the log-likelihood function is linear in the complete data sufficient statistics, and then the 
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For the M-Step we can use the complete data maximum likelihood estimates given by equations (4), (5)
and (6). Such that the maximum likelihood estimate of θ can be obtained by

  (9)
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While for equations (5) and (6) we can’t find explicit solutions with respect to λ and γ. Therefore, the
maximum likelihood estimates of these parameters λt+1 and γt+1 could be solved using any appropriate numerical
method such as Newton Raphson Method. Where these equation could be simplified as follows:
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As a result, the E-step composed of the evaluation of the sufficient statistics defined above starting with

some appropriate pre-assigned initial values (θE,λE,γE) then, the M-step composed of the substitution of the
sufficient statistics in equation (9) to get a new value for the parameter θ and based on the same initial values
we can solve equations (10) and (11) using Newton Raphson method to get the new values of the parameters 
λ and γ. Using the new values of these parameters and repeat until a stopping condition such as:

                   , is a small positive value such as g=0.0001.1 ,t t     

Then              and        are the maximum likelihood estimates of the interested parameters.
1 1,t t   1t 

Simulation and Results:
In this simulation study, the Weibull distribution with various values of the scale and shape parameters

are considered for the data generation, where varying the parameters will implies various censoring rates (P).
Each data set contained 100 interval censored observations of which different censoring rate depends on the
value of λ. Here we ignored the left censoring case. To control the generation process we assumed that the
true survival time t follows Weibull distribution; the steps used for data generation are as follows:

a) Generate  from Weibull distribution with different scale parameter values to control the censoring rate.
b) Generate a vector V for the clinic visits, assuming that there are 20 clinic visits, in case of Weibull

distribution the first visit v1 was generated from U(0,0.1). Then the next visit v2 was generated from
U(v1,v1+0.1). The other visit times were generated in the same manner.

c) Generate a 100×2 empty matrix named “bound” for each data set. The entries of bound matrix are the
intervals endpoints for each individual after comparing the true survival time with the 20 visit times. In
case of right censoring the right end point can be assigned to be a large number beyond the last visit time.
The formula used for end points determination is:
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For i=1,...,100, j=1,...,20 

0 : [ ] [1]

[ ,1] [ ] : [ ] [ ] [ 1]

[20]: [ ] [20]

[1] : [ ] [1]

[ , 2] [ 1] : [ ] [ ] [ 1]

: [ ] [20]

if t i V

bound i V j if V j t i V j

V if t i V

V if t i V

bound i V j if V j t i V j

Inf if t i V


   
 


    
 

d) Generate a 100×2 empty matrix named “status”. Based on the bound matrix let:

Status [i,1] / censoring indicator 
0 : [ , 2] 100

1 :i

if bound i

otherwise



 


Status [i,1] / cured indicator  
0 : 0

1 :
i

i

if
c

otherwise

 
 


In this simulation we are interested in the bias and mean square error (MSE), where bias can be defined
as follows:

 (17)ˆ( ),bias E  

where     is the maximum likelihood estimate for π.
A Smaller bias indicates that the parameter is closer to the true value on average and hence more accurate.

Although bias can be used to measure the accuracy of an estimator, the mean square error (MSE) provides
a better assessment of the quality of parameters. This is evident in a simulation study where the true parameter
values are assumed known at the outset. The MSE of an estimator is known as the expected squared deviation
of the estimated parameter value from the true parameter value, and by using a standard notation for a scalar
parameter it can be decomposed into the following form:

 .           (18)
The simulation was carried out with the built-in random generators in “R”. The Results are shown in tables

4.1, 4.2 and 4.3.   
  
Table 4.1: Censoring Rates, Real Cure Rates, Expected Cure Rates, Bias and the MSE for P0[20%, 30%].
Run Censoring Rate (%) Real Cure (%) Expected Cure (%) Bias (%) MSE × 1000
1 21 21 19 2 0.615
2 23 21 19 2 0.615
3 23 21 18 3 1.115
4 24 21 19 2 0.615
5 24 22 20 2 0.615
6 25 22 19 3 1.115
7 25 23 21 2 0.615
8 26 23 20 3 1.115
9 26 23 21 2 0.615
10 26 23 20 3 1.115
11 27 24 21 3 1.115
12 27 24 20 4 1.815
13 27 24 22 2 0.615
14 28 24 20 4 1.815
15 28 25 22 3 1.115
16 29 25 21 4 1.815
17 29 25 22 3 1.115
18 30 26 22 4 1.815
19 30 26 22 4 1.815
20 30 27 24 3 1.115
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Table 4.2: Censoring Rates, Real Cure Rates, Expected Cure Rates, Bias and the MSE for P0[30%, 40%].
Run Censoring Rate (%) Real Cure (%) Expected Cure (%) Bias (%) MSE × 1000
1 31 30 26 4 1.857
2 31 31 26 5 2.757
3 32 31 26 5 2.757
4 32 31 27 4 1.857
5 32 32 27 5 2.757
6 33 32 27 5 2.757
7 33 33 29 4 1.857
8 34 33 28 5 2.757
9 34 33 29 4 1.857
10 35 34 29 5 2.757
11 35 34 29 5 2.757
12 36 34 29 5 2.757
13 38 35 29 6 3.857
14 38 35 30 5 2.757
15 38 35 30 5 2.757
16 39 36 30 6 3.857
17 39 36 30 6 3.857
18 40 36 29 7 5.157
19 40 37 31 6 3.857
20 40 37 31 6 3.857

Table 4.3: Censoring Rates, Real Cure Rates, Expected Cure Rates, Bias and the MSE for P0[40%, 50%] .
Run Censoring Rate (%) Real Cure (%) Expected Cure (%) Bias (%) MSE × 1000
1 41 40 34 6 3.738
2 41 40 33 7 5.038
3 42 40 33 7 5.038
4 42 41 34 7 5.038
5 44 41 33 8 6.538
6 44 42 35 7 5.038
7 44 42 35 7 5.038
8 45 42 34 8 6.538
9 45 43 35 8 6.538
10 46 43 34 9 8.238
11 46 43 35 8 6.538
12 46 44 35 9 8.238
13 47 44 34 10 10.138
14 47 44 35 9 8.238
15 48 45 35 10 10.138
16 48 45 36 9 8.238
17 48 46 35 11 12.238
18 49 46 35 11 12.238
19 49 47 36 11 12.238
20 50 50 38 12 14.538

The bias and mean square error values for the corresponding censoring rates indicate that the proposed
method of cure rate estimation is more efficient when censoring rate decreases, and the estimation start to
diverge in case of heavy censoring occurs. This result can be detected explicitly from figure 4.1 below which
is constructed by allocating the censoring rates versus bias values from the results shown in the above tables
ignoring the repeated censoring rates and considering the average of the corresponding bias values.

Conclusion:
We have investigated the parametric maximum likelihood estimation approach to estimate the cure fraction

based on bounded cumulative hazard model under interval censored data. We have considered also the Weibull
distribution to represent the distributional function of the uncured patients. The estimation method is a
combination of the straight forward maximum likelihood estimation via the EM algorithm. As a result, the
estimating equations are solved numerically since no explicit solutions could be found.

However, based on results obtained from the simulation study, we were able to conclude from observing
bias and mean square error values that the parametric estimation of cure fraction under the assigned
specifications and methods provides inefficient estimates of this fraction when the censoring rate is rapidly
increasing, and this parametric estimation seems to provide consistent and better estimates of the cure fraction
when the censoring rate is a bit low. Thus, when much censored observations are founded in the data set, the
proposed estimation procedure is often producing biased estimators. This result was to be expected because
the parametric assumption in case of high censoring rate is not valid, since the censored observations ’shrink’
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the parametric assumption toward the survival data set, and it is wrongfully to consider the parametric method
when the censoring rate is high.

Fig. 4.1: Censoring rate versus bias for some generated samples based on Weibull Distributions.
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