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A Zero-one Programming Model for Partial Digest Problem
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Abstract: The Partial Digest is a well-studied problem with important applications in physical
mapping of DNA molecules. In this paper we present a new point of view to the Partial Digest
Problem (PDP). We present a sufficient condition for solution of PDP and formulate the PDP as a
linear zero-one programming model, such that any optimal solution of this model will be a solution
of PDP.
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INTRODUCTION

One of the interesting tasks in computational biology is Restriction Site Mapping. When a particular
restriction enzyme is added to a DNA, the DNA is cut at particular restriction sites. The goal of restriction
site mapping is to determine the location of every site for a given enzyme. Using gel electrophoresis, one can
find the distance between each pair of restriction sites. In the Partial Digest Problem, we are given these
distances arising from digestion experiments with one enzyme, and we want to compute the locations of all 

restriction sites. Let                          be the set of restriction site locations on a DNA strand. We denote 0 1= { , , , }nx x x x

the "multiset" of all N=n(n+1)/2 pairwise distances between these sites by                                    .= { | > , , = 0,1, , }j i j ix x x x x i j n  

In the partial digest problem, given a multiset B={b1,b2,...,bN} of distances, the goal is to find a set 
Y={y0,y1,...,yN} of points on a line such that B is the pairwise distance multiset for Y. We denote the minimum
and maximum of B respectively by bm and bM.

This problem was defined in the 1930's in the area of X-ray crystallography Patterson, (1935). In 1988
P. Lemke and M. Werman, solved this problem in pseudo-polynomial time (the running time of the presented
algorithm depended on bM) Lemke and Werman, (1988). Skiena et al. created a backtracking algorithm to solve
this problem where its running time depended only on n Skiena et al., (1990). In 1994 Z. Zhang, by an
example, showed that the running time of backtracking algorithm in worst case is exponential Zhang, (1994).
T. Dakice in his Ph.D. thesis presented a 0-1 quadratic programming model for PDP and solved it by a
heuristic successive semidefinite programming algorithm Dakic, (2000). In 2005, M. Cieliebak et al. proved
that Partial Digest is hard to solve for erroneous input data Cieliebak et al., (2005).

In this paper we present a sufficient condition for solution of PDP and formulate the PDP as a linear zero-
one programming model, such that any optimal solution of this model will be a solution of PDP.

A Sufficient Condition for Solution of Partial Digest Problem:
In this section we present a new point of view to the PDP and obtain a sufficient condition for solution

of PDP. Suppose that there are N=n(n+1)/2) line segments with lengths of b1,b2,...,bN. We want to place them
in a line interval [0,bM] such that the multiset of endpoints of these line segments equals to B={b1,b2,...,bN}.
In other word, we want to produce a solution of PDP with endpoints of line segments. Let a line segment with
length bj, be denoted as "bj-segment". It is obvious that the beginning point of bM-segment is zero and the
endpoint of this line segment is bM. Let the variables xj and xj+N show the beginning and end points of the bj-

segment respectively in the interval [0,bM]. Therefore we have                   for all j=1,2,...,N.=j j jN
x x b 
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We design an optimization model with x={x1, x2,...,x2N } as the decision variables such that, at optimality,
x has exactly (n+1) different values and the multiset of these (n+1) values is equal to B. We create the set x
by eliminating the replicated members of x. (The number of different values in x is equal to the cardinality 

of x,     ).| |x

Each set of values of xj 's that are between zero and bM, and satisfy the constraints 

                                      , is  defined  as  a "placement" of  line segments b1, b2,...,bN in interval = ( = 1, 2, , )j N j jx x b j N  

[0,bM]. It is clear that a placement in which the number of its endpoints is not equal to (n+1) is not desirable
to find a solution of PDP. Moreover, in the following example we show that it is possible to place the line 

segments in interval [0,bM] with (n+1) endpoints such that the multiset of the endpoints is not equal to B.

Example:
let B={2,2,2,4,4,4,6,6,8,10} be the input data of PDP. Then we have N=10, n=4, the target interval is:

[0,10], and b1=2, b2=2, b3=2, b4=4, b5=4, b6=4, b7=6, b8=6, b9=8, b10=10.
We present two different placements of these line segments in interval [0,10] with n+1=5 endpoints, such

that one of them is a solution of PDP but the other one is not. In the presented placement in the table(1)
(placement(1)), x is equal to {0,4,6,8,10} and Δx is equal to B. Therefore, x is a solution of PDP.In the
presented placement in the table(2) (placement(2)), x is equal to {0,4,6,8,10} but Δx=[2,2,2,4,4,6,6,8,810] is

not equal to B therefore x is not a solution of PDP.W 

Table 1: xi 's values in the placement(1)
i 1 2 3 4 5 6 7 8 9 10
bi 2 2 2 4 4 4 6 6 8 10
xi 4 6 8 0 4 6 0 4 0 0
xi+10 6 8 10 4 8 10 6 10 8 10

Table 2: xi 's values in the placement(2)
i 1 2 3 4 5 6 7 8 9 10
bi 2 2 2 4 4 4 6 6 8 10
xi 8 8 0 0 0 0 4 4 0 0
xi+10 10 10 2 4 4 4 10 10 8 10

Review of differences between placement(1) and placement(2) is useful to provide the rule of correct
placing. In placement(1) for each      from x there are exactly n=4 members of x equal to xk (see Figure 1),kx
but in placement(2) only x13 is equal to 2 and there are more than 4 members of x equal to 4 (see Figure 2).
In placement(2) some bi segments coincide with each other, i.e. they have the same beginning and end points.
For example b4, b5 and b6 are coincided together. But in placement(1) there is no coincidence.

In the following lemma and theorem it is proved that each placement of B with (n+1) different endpoints
that has no coincidence, is a solution of PDP.

Lemma 1:
If a placement has no coincidence, then its set of endpoints consists of at least (n+1) different values.
Proof: If a placement x does not have any coincidence, then each pair of members of x corresponds at

most to one  member of B. Suppose that x has r members. The number of distinct pairs of the members is 

greater than or equal to N (           ). this means:=| |N B

1
= ( 1)/2 =

2 2

r n
N n n

   
    

   

517



Aust. J. Basic & Appl. Sci., 5(3): 516-520, 2011

Fig. 1: places of xj  's in placement(1)

Fig. 2: places of xj  's in placement(2)

Therefore:  1r n  �

Theorem 1:
Let x be a placement with no coincidence and corresponding x has exactly (n+1) members, then x is a

solution of PDP.
Proof: In a placement with no coincidence each bj has a unique corresponding pair         , so that ( , )k lx x

          and             . Therefore there are N distinct pair of members of x corresponding to members =k jx x =l j Nx x 

of B. On the other hand there is only N members in Δx, hence there is no member of Δx that is not in B. In
the other word Δx=B.�

In the next section we obtain a solution for PDP by looking for a placement of bi-segment's with (n+1)
end points with no coincidence.

Linear zero-one programming model:
In this section we present a linear zero-one programming model which in optimality characterize a solution

of PDP. As we mentioned in definition of the "placement", in any placement we have:

     (1)

= = 1,2, ,

0 = 1, 2, , 2

= 0

j j jN

j M

N

x x b for j N

x b for j N

x

 

 





Now, to avoid coincidence in a placement, we define a set of constraints. A coincidence occurs when two
line segments with the same length have equal beginning and end points. Therefore in any placement that
satisfies in following constraints we have no coincidence: 

      (2)= >j i m j ix x b if b b and j i 

Note that bm is the minimum of B and any solution of PDP satisfies in 2.
In the section 2 we saw that any placement with no coincidence that has exactly (n+1) different values

is a solution for PDP. To obtain a placement with exactly (n+1) different values, we divide the xi 's to (n+1)
groups, such that each group contains n members with same values. We define the variables dij to specify
equality  or inequality of xi and xi. dij is a zero-one variable that is equal to 1 iff x1=xj and is equal to 0 iff 

x1…xj . To avoid duplication we define dij only for                         . We denote the set of dij 's by d. ( , = 1, 2, , 2 )j i i j N 

With respect to definition of dij we have:
 

     (3)

1 = ,

=

0 .

i j

ij

i j

if x x

d

if x x




 
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When we divide the xi 's to (n+1) groups (each group with n equal values), For each i there are (n+1)
members of x equal to xi. In the other word we have: 

     (4)
> <

= 1 = 1, 2, , 2ij ji
j i j i

d d n for i N   

With respect to theorem 2, If (x,d) satisfies in equations (1), (2), (3) and (4), then x is a solution of PDP.
Our aim is to present the PDP as a linear zero-one programming model. To linearize the definition of dij

consider the following optimization model:

      (5)

<

: =

: . 0

. 0

= 0,1

ij
i j

ij j iM M

ij j iM M

ij

maximum f d

subject to b b d x x

b b d x x

d

   

   



In the next theorem we prove that any optimal solution of 5 satisfies in the (3)

Theorem 2:
If (x,d) be an optimal solution of (5), then (x,d) satisfies in the (3).
Proo: Suppose that (x,d) be an optimal solution of (5). When xi=xj, dij=1 satisfies in the constraints of (5),

and with respect to optimality we have dij=1. If xi … xj with respect to constraints of (5) we have bM-bM,dij >0
and dij = 0. When dij = 1, constraints of (5) imply -xj+xi$0 and xj-xi$0 therefore -xi=xi. If dij=0 with respect
to optimality we have xi … xj because xi = xj and dij=1 satisfy in (5) and have better objective function. �

Now we present the PDP as a linear zero-one programming model. The final model is as follow: 

<
: =

subject to :

iji j
maximum f d

. 0 > , , = 1,2, , 2M M ij j ib b d x x for j i i j N    

. 0 > , , = 1,2, , 2M M ij j ib b d x x for j i i j N    

= = 1, 2, ,j N j jx x b for j N  

> <
= 1 = 1, 2, , 2ij jij i j i

d d n for i N   
      

= 0,1 > , , = 1, 2, , 2ijd for j i i j N

0 = 1, 2, , 2j M
x b for j N  

= 0Nx

This model can be solved by any zero-one programming or integer programming algorithms. 

Conclusion:
In this paper we presented a sufficient condition for the solution of PDP and then we formulated the PDP

az a zero-one programming model, that can be solved by any zero-one programming or integer programming
algorithms. The computational class of partial digest problem is an open problem. Neither a proof of NP-
hardness nor a polynomial time algorithm is known for this problem.
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