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Abstract: The steady two-dimensional magnetohydrodynamic (MHD) mixed convection flow near the
stagnation point of a vertical surface in a viscoelastic fluid is investigated in this paper. The
temperature of the wall is assumed to vary linearly with the distance from the stagnation point. The
partial differential equations which governed the flow and thermal fields are transformed into a system
of ordinary differential equations, which are then solved numerically using an implicit finite-difference
scheme known as the Keller-box method. The numerical results for the local Nusselt number Nu, and
the skin friction coefficient C, are obtained and discussed in detail for various physical parameters
such as the magnetic parameter M, viscoelastic parameter K, Prandtl number Pr and mixed convection
parameter / for both assisting (4 > 0) and opposing (4 < 0) flows. The numerical values obtained are
shown in tables and features of the flow and heat transfer are presented in the form of graphs.
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INTRODUCTION

The theory of non-Newtonian fluids has been actively discussed over the last few decades due to its
importance in industrial applications. Pioneering works by Oldroyd [1], Beard and Walters [2] and Rajagopal
et al. [3] who have developed the boundary layer theory for second-grade fluids, namely viscoelastic fluid
which exhibits both elastic and viscous properties have motivated many researchers to really explore this kind
of fluid with various situations.

The study of a non-Newtonian fluid flow in the region of stagnation point has been done by several
authors, such as Srivastava [4], Rajeswari and Rathna [5], Beard and Walters [6], Garg and Rajagopal [7],
Ariel [8], Mahapatra and Gupta [9] and very recently by Ayub et al. [10] who studied the stagnation point
flow of viscoelastic fluid towards a stretching sheet and Li et al. [11] for the case of oblique stagnation point
flow of a viscoelastic fluid with the effect of heat transfer. Further, the study of mixed convection in the
stagnation point flow in a viscoelastic fluid has been done by Ramachandran et al. [12] for viscous fluid, while
Hayat et al. [13] and Anwar et al. [14] considered the flow of a viscoelastic fluid over a vertical surface and
horizontal circular cylinder, respectively.

However, problems with associated MHD have not received considerable attention until recently. Ishak
et al. [15] considered MHD flow towards a stagnation point on a vertical surface for micropolar fluid.
Mabhapatra et al. [16] studied two-dimensional steady stagnation-point flow of an incompressible viscoelastic
fluid over a flat deformable surface when the surface is stretched in its own plane with a velocity proportional
to the distance from the stagnation-point, and very recently, Prasad et al. [17] performed an analysis of flow
and heat transfer characteristics in an incompressible electrically conducting non-Newtonian boundary layer
flow of a viscoelastic fluid over a stretching sheet, to name just a few.

The present problem is an extension of the problem considered in the paper of Hayat et al. [13], by
considering steady two-dimensional MHD mixed convection flow towards a stagnation point on a vertical
surface immersed in a viscoelastic fluid.

Basic Equations:
Consider a steady mixed convection boundary layer flow of an incompressible electrically conducting
viscoelastic fluid over a semi-infinite vertical surface, which is placed in such fluid with uniform ambient
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temperature 7.. The velocity of the flow external to the boundary layer is U(x) and the temperature 7, (x) of
the plate are proportional to the distance x from the stagnation point, i.e. U(x)=ax and T,(x)=T +bx, where
a and b are constant. A uniform magnetic field of strength B, is applied in the positive y-direction. It is
assumed that the surface of the plate is heated or cooled to a variable T,(x), where T, (x) > T is for a heated
plate and T,(x) < T, is for a cooled plate, as shown in Fig. 1.
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Fig. 1: Physical model and coordinate system.

Under these assumptions, along with the Boussinesq approximation, the boundary layer equations which
govern the flow is given by
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where © and v are the velocity components along the x-and y-axes, respectively, 7, g, , b, @, p, o and k, are
respectively the fluid temperature, acceleration due to the gravity, kinematic viscosity, thermal expansion
coefficient, thermal diffusivity, fluid density, electrical conductivity and viscoelastic parameter. For the “+” sign
in Eq. (2), the “+” sign corresponds to the assisting flow while the “—” sign corresponds to the opposing flow.
The continuity, momentum and energy equations can be transformed into the corresponding ordinary differential
equations by introducing the following variables:

n=(a/lv)”y, u@xy)=ax'(n),

1/2 r-7, v
v(xp)==(av) " f(n). O(n)=7—F
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By substituting (5) into Egs.(1)-(3), Eq. (1) is identically satisfied and Eqgs.(2) and (3) are transformed into:

fm_'_ffﬂ_frz+1+K(2frfm_f02_ffiv)

(6)
+A0+M(1-f") =
0"+Pr(f6'-f'6) = 0 (7)
subject to the boundary conditions (4) which become
£(0)=0, f'(0)=0, 6(0)=1
8
S['(®)=1, f"(0)=0, G(x)=0 ®)

Here, primes denote differentiation  with respect to # Pr=v/a is the Prandtl number,
M = BO2 o/ ( Yol ai; the magnetic parameter and the buoyancy or mixed convection parameter, 4(>0) is defined

as

gBb gB(T,-T)x* /v’ Gr,
A==7F-= 2.2, 2 =52
a Ux /v Re!

)

where Gr,=gp(T,-T,)x*/v* and Re =U_x/vare the local Grashof and Reynolds numbers, respectively,

and K(>0) is the dimensionless viscoelastic parameter, given by
k= ka (10)
P

The physical quantities of interest in this problem are the skin friction coefficient C, and the local Nusselt
number Nu,, which are defined as

T Xq,,

C,=—2-, Nu =—47="—
vt M T (T -Ty

©

(11)

where 7, and g, are the wall shear stress and the surface heat flux, respectively, which are given by

Ou o’u 0u Ou Ov
T, = Ul — +ky|u tVv———-2—— ,
ay y=0 y=0

g, =—k{a—Tj , (12)
Y )

Substituting variables (5) into (12), we obtain
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C,Re)>=[ f"+K (3"~ ﬁ"")l]:o = 1"(0),

Nu,/Re)* =-6'(0). (13)
RESULTS AND DISCUSSION

The transformed boundary layer equations (6) and (7) subject to the boundary conditions (8) have been
solved numerically using an implicit finite-difference scheme known as the Keller-box method in conjunction
with the Newton’s linearization technique as described in the book by Cebeci and Bradshaw [18]. To validate
the present method, the obtained results were compared with those of Hayat et.al [13] and the agreement is
found to be good. Therefore, we are much confident that the developed code used in this study is suitable to
solve the present problem discussed in this paper.

Table 1 presents the numerical values of the skin friction coefficient /(0) and the local Nusselt number
-0°(0), respectively, for various values of the viscoelastic parameter K when Pr=0.2 for the case of buoyancy
assisting flow (A>0) and buoyancy opposing flow (A<0). From Table 1, it can be seen that the values of

C,Re’? decrease as the viscoelastic parameter K increases, regardless of whether the flow is assisting or

opposing. Comparatively, the values of the skin friction coefficient and the local Nusselt number are not much
different between the assisting and opposing flows. However, the opposing flow gives smaller values compared
to the assisting flow. Table 2 shows the effect of magnetic parameter M in the stagnation point flow adjacent
to a vertical surface in a viscoelastic fluid with viscoelastic parameter K=1 for both assisting and opposing
flows, respectively, when Pr=0.2. In this case, the viscoelastic parameter K=1 is held fixed and the effect of
the imposed magnetic field is investigated. Clearly seen from Table 2, increment of the magnetic parameter
M will also increase the magnitude of the skin friction coefficient and the local Nusselt number.

The profiles of the flow are shown in Figs. 2-5 below. Figs. 2 and 4 show the velocity profiles for various
values of the magnetic parameter M for Pr=0.7 when the flow is assisted (4=1) and opposed (1=-1),
respectively. For a particular value of M, the velocity boundary layer thickness increases monotonically with
n, and becomes unity at the outside of the boundary layer, which actually satisfies the boundary condition

f ’(oo) — 1. As M increases, the boundary layer thickness decreases and hence leads to the increase of the

drag friction. 1
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Fig. 2: Velocity profiles when Pr=0.7, K=1 and A=1 (assisting flow) for various values of the magnetic
parameter M.
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Fig. 3: Temperature profiles when Pr=0.7, K=1 and A=1 (assisting flow) for various values of the magnetic
parameter M. 9
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Fig. 4: Velocity profiles when Pr=0.7, K=1 and J=1 T](opposmg flow) for various values of the magnetic
parameter M.

T T T T T T T

0.9t K=1, =1, Pr=0.7 .

0.&8f A
0.7 F M=100, 10, 1 b
06}
0.5}

0.4r

Terrperature, ofn)

0.3r

0.2f

01r

0
0 05 1 15 2 25 3 35 4

eta m
Fig. 5: Temperature profiles when Pr=0.7, K=1 and A=-1 (opposing flow) for various values of the magnetic
parameter M.
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The temperature profiles when K=1 and Pr=0.7 for several values of M are shown in Figs. 3 and 5 for
assisting and opposing flows, respectively. It is observed that the temperature and the thermal boundary layer
thickness decreases as M increases, and hence leads to the increase of temperature gradient at the wall or local
Nusselt number. Qualitative comparison shows that the profiles are not much different between the assisting
and opposing flows. However, heating the plate will decrease the boundary layer formed and therefore
increases the drag friction.

Conclusions:

A numerical study of the steady viscoelastic fluid towards stagnation point on a vertical surface with the
effect of magnetic parameter M has been carried out. The governing partial differential equations were reduced
to a set of ordinary differential equations by introducing the appropriate similarity variables and hence were
solved for different values of the viscoelastic parameter and magnetic parameter. Both the buoyancy assisting
flow (heated surface) and buoyancy opposing flow (cooled surface) situations were considered. It is found that
the results for the skin friction coefficient and the local Nusselt number obtained for the assisting flow (heated
plate) and opposing flow (cooled plate) cases are not much different and this led to the profiles forms for both
cases to be alike.

Table 1: Values Of /2 (0) and -0¢(0) Obtained When M=0, Pr =0.2, /=0.2 (Assisting Flow) And 4=-0.2 (Opposing Flow) For various
Values of the Viscoelastic Parameter K. Results in () are Those of Hayat et al. [13].

K Assisting flow (4 = 0.2) Opposing flow (A = -0.2)

C,Re¥? Nu, /Re¥? C,Re!? Nu, /Re¥?
0.5 0.9821 (0.9821) 0.4099 (0.4097) 0.8185 (0.8184) 0.3960 (0.3939)
1 0.8173 (0.8174) 0.3919 (0.3920) 0.6846 (0.6844) 0.3798 (0.3785)
2 0.6472 (0.6474) 0.3696 (0.3698) 0.5439 (0.5435) 0.3597 (0.3578)
3 0.5538 0.3551 0.4661 0.3470

Table 2:  Values Of f? (0) and -0¢(0) Obtained When K=1, Pr =0.2, 1=0.2 (Assisting Flow) And 1=-0.2 (Opposing Flow) For various
Values of MHD Parameter M.

M Assisting flow (A = 0.2) Opposing flow (A = -0.2)
C,Re¥? Nu, /Re!? C,Re!? Nu, /Re¥?
le+05 1.0512 0.4085 0.9469 0.3993
2.2415 0.4585 2.1900 0.4555
6.6431 0.5139 6.6246 0.5134
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