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Generalized AOR Method for Solving System of Linear Equations
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Abstract: The accelerated overrelaxation (AOR) iterative method is a stationary iterative method for
solving linear system of equations. In this paper, a generalization of the AOR iterative method is
presented and its convergence properties are studied. Some numerical experiments are given to show
the efficiency of the proposed method. AMS Mathematics Subject Classification: 65F10.
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INTRODUCTION

Consider the linear system of equations

Ax = b,   (1)

where the matrix                  and                    . Let A be a nonsingular matrix with nonzero diagonal 
n nA  , nx b

entries and  A = D-E-F,  where D is the diagonal of  A, -E its strict lower part, and -F  its strict upper part. Then
the Jacobi and the Gauss-Seidel methods for solving Eq. (1) are defined as

( 1) 1 ( ) 1

( 1) 1 ( ) 1

( ) ,

( ) ( ) ,

k k

k k

x D E F x D b

x D E Fx D E b

  

  

  

   

respectively. In the accelerated overrelaxation (AOR) iterative method (Hadjidimos, A.,  1978), system (1) is

written as                ,       where            is a parameter. Then the coefficient matrix          is decomposedAx b  0  A
in the form

( ) [(1 ) ( ) ],A D E D E F           

where             Next, the system                      is written as   Ax b 
1 1( ) [(1 ) ( ) ] ( ) ,x D E D E F x D E b              

and then the AOR iterative method is defined as

( 1) 1 ( ) 1( ) [(1 ) ( ) ] ( ) .k kx D E D E F x D E b               

It is well-known that for specific values of ω and γ the AOR iterative method reduces to Jacobi, Gauss-
Seidel and successive overrelaxation iterative (SOR) methods:

   Jacobi method,0, 1:  
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         Gauss-Seidel method,1:  

             SOR method.: 
 

Although there are several iterative methods such as GMRES (Saad, Y.,  M.H. Schultz, 1986)  and Bi-
CGSTAB (van der Vorst, H. A., 1992) algorithms for solving Eq. (1) which are more effective than these four
stationary iterative methods, they have been used as preconditioners for common iterative solvers (see for
example (DeLong, M.,  J.M. Ortega, 1995; DeLong, M.,  J.M. Ortega, 1996; DeLong, M.,  J.M. Ortega, 1998)).
In (Salkuyeh, D.K., 2007), Salkuyeh proposed the generalized Jacobi (GJ) and Gauss-Seidel (GGS) methods and
studied their convergence properties. In this paper, we propose a generalization of the AOR (hereafter denoted
by GAOR) method and verify its convergence properties.

This paper is organized as follows. In section 2, we review the GJ and GGS iterative methods and propose
the GAOR iterative method. Section 2 also provides the background for the convergence of the proposed method.
Convergence properties of the GAOR method are presented in section 3. Some numerical experiments are given
in section 4. Concluding remarks are given in section 5.

2. The GJ, GGS and GAOR methods:

Let                  be an           matrix and                  be a banded matrix of bandwidth              defined as( )ijA a n n ( )m ijT t 2 1m 

, ,

0, otherwise.
ij

ij

a i j m
t

  
 


We consider the decomposition

  (2),m m mA T E F  

where           and          are the strict lower and upper part of the matrix       ,        respectively. In other mE mF m mA T

words, matrices Tm, Em, and Fm, are defined as following
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Now, similar to the classical AOR method its generalized version is defined as following
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  (3)
( 1) 1 ( ) 1( ) [(1 ) ( ) ] ( ) .k k

m m m m m m mx T E T E F x T E b               

Note that, if m = 0, then the GAOR iterative method results in the classical AOR method. As the AOR method,
for some specific values of γ and ω the GAOR method reduces to GJ, GGS and the GSOR (generalized SOR)
methods. In this section, we focus our attention on the GAOR method and refer the readers to (Salkuyeh, D.K.,
2007) for more details about GJ and GGS methods. Evidently, results for the GAOR method also are valid for
the GSOR method. Let 

1

( ) 1

( , ) ( ) [(1 ) ( ) ],

( , ) ( ) [(1 ) ( ) ]

AOR

m
AOR m m m m m

G D E D E F

G T E T E F

      

      





     

     

be the iteration matrix of the AOR and GAOR methods, respectively.
For convenience, some notations, definitions and results that will be used in the next section are given below.

A matrix is called nonnegative, semi-positive and positive if each entry of A is nonnegative, nonnegative but

at least a positive entry and positive, respectively. We  denote  them  by           ,              and               .0A  0A  0A 

Similarly,  for n-  dimensional  vectors,  by  identifying  them  with             matrices,  we  can  also  define1n

           ,            and              . A matrix A is said to be reducible if there exists a permutation matrix P such0x  0x  0A 

that 

      , 
0

T X Y
P AP

Z

 
  
 

where X and Z are both square matrices. Otherwise, A is said to be irreducible. Additionally, we denote  the 

spectral radius of A by            .( )A
Definition 1: 

A matrix                is said to be an M-matrix if             for                    ,              , for           , ( )ijA a 0iia  1, ,i n  0ija  i j

A  is nonsingular and                  .
1 0A 

Theorem 1: 
(Saad, Y., 1995) Let                 and                 be two matrices such that             and              for( )ijA a ( )ijB b A B 0ijb 

all          . i j

Then, if A is an M-matrix, so is the matrix B.

Definition 2:  

Let                  . The splitting                       is called:
n nA  A M N 

(a) weak regular if               and                    ;
1 0M   1 0M N 

(b) regular if                   and               . 
1 0M   0N 
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Theorem 2: 
(Wang, L., Y. Song, 2009) Let             be an irreducible matrix. If                   for some            , then0A  Ax x 0x 

                 .( )A 

Theorem 3: 
(Wang, L., Y. Song, 2009) If            is irreducible, then            is a simple eigenvalue and A has an0A  ( )A

eigenvector              corresponding to            .0x  ( )A
Theorem 4: 

(Wang, L., Y. Song, 2009) Let A be an M-matrix and                       be a regular or weak regular splittingA M N 

of A. Then,                       .
1( ) 1M N  

In the next section, the convergence properties of the GAOR method are studied.

3. Main Results:
Lemma 1:

Let  A be an M-matrix and                              be  the  splitting  defined  as  (2).  Then         is  an m m mA T E F   mT

matrix and                        
1( ) 1.m mT E  

 
Proof: 

Let                        . Obviously, we have               . Therefore, from Theorem 1,         is an M-matrix.m m mS T E  mA S mS

Similarly, it is easy see that       is also an M-matrix. Hence               . On the other hand,               . ThismT 1 0mT   0mE 

shows that                         is a regular splitting. Now, by Theorem 4,       .                .m m mS T E  1( ) 1m mT E  

Theorem 5: 
(Wu, M., L. Wang, Y. Song, 2007) If A is an M-matrix and              ,          with              then the AOR0 1    0, 

iterative method is convergent, i.e.,                              . ( , ) 1AORG   

Theorem 6: 
If A is an M-matrix and               ,         with              then the GAOR method is convergent, i.e., 0 1    0, 

                            . ( ) ( , ) 1m
GAORG   

Proof:  
In the GAOR iterative method we have                        where                                andm m mA M N  ,m m mM T E 

 
                                              Obviously, we have                 . Therefore, by Theorem 1,            is (1 ) ( ) .m m m mN T E F        mA M mM

an M-matrix, and as a result                   On the other hand, from Lemma 1 we have                          . 
1 0.mM   1( ) 1m mT E  

Since                   we have                        , and therefore                   0 1  1( ) 1m mT E   

1 1 1 1 1 1( ) [(1 ) ( ) ] ( ) [(1 ) ( ) ]m m m m m m m m m m mM N T E T E F I T E I T E T F                         

1 1 1 1

0

( ) [(1 ) ( ) ] 0.m m m m m
j

T E I T E T F    


   



     

Hence, we conclude that                         is a weak regular splitting of         . m mA M N   A
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Now, from Theorem 4, we observe that                        and this completes the proof. 1( ) 1m mM N  

Example 1: 
Consider the M-matrix

4 2 1 2

1 5 5 1

2 1 9 1

1 1 1 5

A

   
    
   
    

From Theorem 6, we have                             . For example, we have ( ) ( , ) 1m
GAORG   

        ,                                                    , (1) (0.5,0.9) 0.6776 1GAORG    (1) (0.4,0.7) 0.7629 1GAORG  

        ,                                                    , (2) (0.5,0.9) 0.5053 1GAORG    (2) (0.4,0.7) 0.6271 1GAORG  

These results show that Theorem 6 holds here.

Example 2: 
Consider the matrix

7 2 1 2 1

0 5 1 0 4

,1 1 7 1 1

2 1 1 6 4

9 6 6 6 8

A

 
   
   
  
  

This matrix is not an M-matrix. Here we have

  ,                                                , (0.6,0.8) 0.8450GAORG   (1) (0.6,0.8) 0.7721GAORG 

   (2) (0.6,0.8) 0.7907.GAORG 

This example shows that, if           , then  in general                        is not less than                 . p q  ( ) ( , )p
GAORG    ( ) ( , )q

GAORG  

The next theorem shows that this is true in the special case.

Theorem 7:
Let A be an irreducible M-matrix,                        , with               and             . If                     0 1    0,  m p ( ) ( , )p

GAORG  
is an irreducible matrix, then

    ( ) ( )( , ) ( , ) 1.m p
GAOR GAORG G      

Proof: 
For the sake of  simplicity let                                 and                                . Similar to the proof

( ) ( , )p
p GAORS G   ( ) ( , )m

m GAORS G  

of Theorem 6, we have              . Since       is an irreducible matrix, from Theorem 3,                     is an0pS  pS ( )pS 

eigenvalue of        corresponding to the eigenvector                 i.e.,pS 0,x 
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  (4).pS x x
From Theorem 6 we have                                   Eq. (4) is equivalent to 0 ( ) 1.pS   

  [(1 ) ( ) ] ( ) ,p p p p pT E F x T E x          

or

  (5)( ) ( 1)p p pE x F x T x           

Now, we have

1( ) [(1 ) ( ) ]m m m m m m m mS x x T E T x E x F x T x E x                

  (6)
1( ) [(1 ) ( ) ]m m m m mT E T x E x F x              

Evidently,                     . We split the matrix                as                               , where        and     0p mT T  p mT T p m m mT T L U   mL mU

are strictly lower and strictly upper triangular matrices, respectively. Note that                         . On the other, 0m mL U 
hand, we have  

, .p m m p m mE E L F F U   

Therefore, form (5) and (6) we obtain

1

1

1

1

( ) [ (1 )( ) ( ) ]

( ) [ (1 ) (1 ) ]

( ) [ ((1 ) (1 )) (1 ) ]

( 1) ( ) [(1 ) ] .

m m m m m m m

m m m m

m m m m

m m m m

S x x T E L U L U x

T E L U x

T E L U x

T E L U x

        

         

    

  









          

           

       

    

From the proof of Theorem 6 we have                             On the  other  hand, we have  
1( ) 0.m mT E   0 1, 0 1,    

and                     . Therefore,                        Now, from Theorem 2 we have                             and, 0m mL U  0.mS x x  ( ) ( ),m pS S   

this completes the proof. 

Remark 1:  
Let A be an irreducible M-matrix,        ,               with              and           .  Then 0 1    0,  1m 

   ( ) ( , ) ( , ) 1.m
GAOR AORG G      

Proof: 
From Theorem 7 it is enough to show that the matrix                       is irreducible. This has been proved( , )AORG  

in Theorem 2.5 in (Wang, L., Y.Song, 2009). 

Example 3:  
Consider the matrix of the Example 1. This matrix is an M-matrix and we have

     (2) (1)(0.5,0.9) 0.5053 (0.5,0.9) 0.6776 (0.5,0.9) 0.8272 1,GAOR GAOR AORG G G       
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     (2) (1)(0.4,0.7) 0.6271 (0.4,0.7) 0.7629 (0.4,0.7) 0.8721 1,GAOR GAOR AORG G G       

These results show that Theorem 7 and Remark 1 hold here.
    In the next section, we give some numerical experiments to show the effectiveness of the proposed method.

4. Numerical Experiments:
All the numerical experiments presented in this section were computed in double precision with some 

MATLAB codes on a personal computer Pentium 4 - 256 MHz. In all the experiments, vector (1,1, ,1)Tb A 

was taken to be the right-hand side of the linear system and  a  null vector  as an  initial guess.  The stopping

criterion used was always                                    where       is  the  computed  solution at step k of each10

2
/ 10 ,k k

b Ax b   kx

method. We present two examples to compare the numerical results of  the GAOR method with that of  the AOR
method.

Example 4:
In the this example, we consider the            banded matrixn n

 
12.5 3 2 1

3 12.5 3 2 1

2 3 12.5 3 2 1

1 2 3 12.5 3 2 1

.

1 2 3 12.5 3 2 1

1 2 3 12.5 3 2

1 2 3 12.5 3

1 2 3 12.5

A

   
     
     
       
 
 

      
     
 

    
    

      

This matrix is strictly diagonally dominant with positive diagonal and nonpositive off-diagonal entries.
Therefore, the matrix  A is an M-matrix (Axelsson, O., 1996).  We let   γ = 0.4   and ω = 0.8 Numerical results
of the AOR and the GAOR iterative methods for   m = 1,2, for different values of n (n = 25000, 50000, 75000,

100000)  are  given  in  Table  1.  In  each  iteration  of  the  GAOR  method  vector  of    the  form 

                              should be computed. Hence, to compute y we may solve   
1( )m my T E z   ( )m mT E y z 

for y. In the implementation of the GAOR method we used the LU factorization of                   to solve thism mT E
system. Here, we mention that the LU factorization of                   is computed before starting the iterationsm mT E
of the GAOR method. In Table 1 the number of iterations of the method and the CPU time (in parenthesis) for
convergence are given (timings are in seconds). The time for the GAOR method is  the sum  of the   time  for

computing the LU factorization of                   and the time for the convergence.  As we observe the GAORm mT E
method is more effective than the AOR method.

Example 5: 
(Wang, L., Y. Song, 2009) We consider the two dimensional convection-diffusion equation 

( ) 2 ( ) ( , ), in (0,1) (0,1),x y
xx yy x yu u e xu y u f x y       
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with the homogeneous Dirichlet boundary conditions. Discretization of this equation on a                         ( 1) ( 1)p p  

grid, by using the second order centered differences for the second and first order differentials gives a linear
system of equations of order n = p2  with n unknowns. As the previous example we consider the right hand

side the system as                               All of the assumptions are as Example 1. Assuming p = 70, 80, 90,(1,1, ,1) .Tb A 

100, we obtain four systems of linear equations of dimension n = 4900, 6400, 8100, 10000.  In Table 2 the
numerical results obtained by the AOR and GAOR with γ = 0.5 and ω = 0.9 are reported. In the GAOR method
we assumed   m = 1.   As we observe, for this example, the GAOR method reduces the number of the iterations
of the AOR method for the convergence by a factor of two.  Table 2 also shows the the CPU times of the GAOR
method is slightly less that that of the AOR method.

Table 1: Numerical results of the AOR and GAOR for Example 4.
Method n = 250000 n = 50000 n = 75000 n =100000
AOR 570 (8.48) 570 (17.06) 570 (27.53 ) 570 (36.78 )
GAOR m = 1 294 (6.64) 294 (13.53) 294 (22.05) 294 (29.28)
m = 2 109 (2.56) 109 (5.13) 109 (8.34) 109 (11.08)

Table 2: Numerical results of the AOR and GAOR for Example 5. 
Method n = 4900 n = 6400 n = 8100 n = 10000
AOR 647 (2.02) 838 (3.48) 1052 (5.45) 1291 (8.52)
GAOR 330 (1.81) 425 (3.20) 532 (5.17) 651 (8.05)

Conclusion:
In this paper, we proposed a generalization of the AOR method  say GAOR method and studied its

convergence properties for M-matrices. We presented some numerical experiments to show the effectiveness of
the proposed method. Numerical results show that the GAOR method is more effective than the AOR method.
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