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Abstract: In this paper, a new approach for computing eigenvalues of a square matrix based on
purely elementary similarity operations is presented. The elementary operations are utilized in such
a way as to transform the matrix first into an upper Hessenberg form and then to a Real Schur form.
An algorithm for computing the eigenvalues of a 2x2 matrix by elementary similarity operations is
presented. It is then possible to compute the real or complex eigenvalues by implementing this
algorithm on each block of the Real Schur form. A numerical example is provided to illustrate the
efficiency of the algorithm.
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INTRODUCTION

A very important topic in numerical linear algebra is obviously the eigenvalue problem; numerical methods
of computing eigenvalues and eigenvectors. The computation of eigenvalues has a paramount importance, since
if they are known; the eigenvectors can then be easily computed Datta, B.N., (1994).

In the algebraic eigenvalues/eigenvector problem for 4 € R™" , one seeks nonzero solution xe C which
satisfy

Ax=Ax. (1)

The classic reference on the numerical aspects of this problem is Wilkinson, (1965) with Parlett, (1980)
providing an equally thorough and up-to-date treatment of the case of symmetric 4. It is really only rather
recently that some of the computational issues associated with solving (1) — in the presence of rounding error-
have been resolved or understood. Even now some problems such as the invariant subspace problem continue
to be active research areas.

The most common algorithm now used to solve (1) for general 4 is the OR algorithm of Francis, (1961).
A shifting procedure (see Datta [3,p.441] for a brief explanation) is used to enhance convergence and the usual
implementation is called double-Francis-QR algorithm.

One of the oldest methods of computing eigenvalues of symmetric matrices is related to Jacobi in 1846.
This method was reinvestigated by Van Neumann in 1946. In 1954 Givens presented the bisection method for
finding eigenvalues of a real symmetric matrix. Then an algorithm for finding the dominant eigenvalues of a
given matrix called power method was introduced. In 1961 Francis, presented an iterative method called OR
for computing all eigenvalues of a given matrix. In 1981 Cuppen, presented a method for computing
eigenvalues of tri-diagonal symmetric matrices using parallel computation. Golub and Van Loan. (1989),
Wilkinson, (1965), Barlow and Demmel, (1990) and many others have worked on eigenvalues and have
published interesting papers. Also for symmetric matrices, other methods such as Sturm bisection sequence,
Lanczos and Rayleigh Ritz methods have been developed (Datta, 1994; Gloub and Van Loan, 1989; Parlett,
1980).

In this letter, an algorithm based on merely elementary similarity operations is presented and it is shown
that it works perfectly, especially for symmetric positive definite matrices.

2. Main Results:
Theorem 1:

If 4 is a 2x2 matrix, it can be transformed to Frobenius form by a fixed number of elementary similarity
operations.
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Proof:
Consider a 2x2 matrix 4 in general form:

a a
A — |: 11 12:| (2)

Gy Ay

The following elementary operations will transform 4 into Frobenius companion from.

Row (2) - Row (2)/a,,, (a,#0) (3)
Column (2) < a,; x Column (2) (4)
Thus producing
A ay alz(l) )

1 a,
Now performing
Column (2) -~ Column (2) -a,, Column (1) (6)
Followed by
Row (1) - Row (1) + a,, Row (2) (7
Produces

@ 2
a a
A |™ 12 . ®)
1 0

Theorem 2:

If 4 is a 2x2 matrix and in Frobenius form, then it can always be transformed into a lower triangular form
by elementary similarity operations from which its eigenvalues can be extracted.

Proof:
For simplicity suppose 4 is in the Frobenius form
e -2b —c )
11 0

The characteristic polynomial of this matrix is:
P(A)=A*+2bA+c (10)
And its eigenvalues are:
A, =—b=*5, where &=b—c (11)

Now we perform:

Row (1) - Row (1) + b Row (2) (12)
followed by

Column (2) - Column (2) - b Column (1) (13)
yielding :
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-b b*-c -b &5
A« 1 5 = 1 b (14)

Now continuing

Row (1) - Row (1) + 6 Row (2) (15)

followed by:

Column (2) = Column (2) - & Column (1) (16)

results in:

A(_{—IH& 52—b5+b5—52}{ﬂl o} -
1 -b-0 1 2

Obviously if 6<0 then 1,, 1, are complex conjugate and this operations takes care of complex computations.

For a given nxn matrix 4, it is well known that starting similarity row operations from the bottom left-
most corner followed by corresponding column operations, will transform it to an upper Hessenberg form
Kincaid, D.R. and E.W.Cheney, (2002). It appears that further similarity operations ruin the Hessenberg form.
This is true, but amazingly if the operations are repeated further, for most cases the matrix is transformed to
Real Schur Form (RSF). Especially if the given matrix is symmetric and positive definite, it always works.
Obviously when the matrix is reduced to RSF, then the eigenvalues are either on the main diagonal if they
are real, or appear on 2x2 blocks which indicate the eigenvalues are complex. Further elementary operations
as described in theorems 1 and 2 yields the complex conjugate eigenvalues. When the eigenvalues are known,
then it is an easy matter to obtain the eigenvectors anyway Datta, (1994).

Following example illustrate the capability of this method.

3. Hlustrative Examples:

Example 1:
Consider a simple case where
1 2 0
A=|2 5 -1
4 10 -1

A few steps of the algorithm for finding the eigenvalues of this matrix are annotated here. First we
perform the similarity row operation

Row (3) - Row (3) — 2 Row (2)
followed by the corresponding column operation;
Column (2) - Column (2) +2 Column (3)

to produce the Hessenberg form:

1 2 0
4=2 3 -1
0 2 1

Now we intend to make the off diagonal elements zero; column pivoting reduces the round off error, so
we first change row two with row one. That is:

Row (2) - Row (1)
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followed by

Column(1) - Column(2)

producing:
3 2 -1
A=|2 1 0
2 0 1

Once again we reduce this to Hessenberg form by performing:
Row (3) - Row (3) —-Row (2)
followed by :

Column (2) - Column (2) + Column (3)

resulting in:
3 2 -1
A=12 1 1
0 0 1

This is now in Real Schur Form. One of the eigenvalues is located at A4(3,3) and the other two can be
found by performing similarity operations as in theorems 1 and 2. This will finally produce the block upper
triangular matrix:

3.7321 0 -1
A= 1 0.2679 0
0 0 1

The eigenvalues are located on the main diagonal of the first block and are in fact 3.7321 and 0.2679
which are as obtained by MATLAB software. It must be pointed out that even if column pivoting is not
performed and the similarity operations are repeated in order to transform A into a lower triangular form, the
method works and after 10 iterations we will have (correct to four decimal places):

3.7321 -3.5638 —42.4242

A=|0.0000 1.0000 9.3444
0.0000 0.0000 0.2679

Clearly the eigenvalues are located on the main diagonal. Bigger full matrices were tested with the
algorithm and satisfactory results were obtained.

Conclusion:

The purpose of this paper was to show how the eigenvalues of a square matrix can be computed merely
by using row and column elementary similarity operations. It is shown that all the eigenvalues are produced
at the same time. If the row operations are performed in a unit matrix, evidently the corresponding eigenvectors
are produced as well. Further research is under way in order to modify this method as to embrace all kinds
of matrices and also to compute the computational effort required.
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