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Abstract: In this paper, an adaptive type-2 fuzzy sliding mode control algorithm is proposed for a
class of continuous time unknown nonlinear systems. the proposed adaptive type -2 fuzzy logic
controller takes advantages of every three method sliding mode control, fuzzy control and proportional
integral (PI) control. The stability analysis for the proposed control algorithm is provided. An inverted
pendulum with variation of pole characteristics, and are adopted to illustrate the validity of the
proposed method. The simulation results show that the adaptive type-2 fuzzy sliding mode controller
achieves the best tracking performance in comparison with the adaptive type-1 fuzzy sliding mode
controller.
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INTRODUCTION

Fuzzy logic control is a technique of incorporating expert knowledge in designing a controller. Past
research of universal approximation theorem (L.X. Wang. 1993) shown that any nonlinear function over a
compact set with arbitrary accuracy can be approximated by a fuzzy system.

It is well known that the sliding mode control method provides a robust controller for nonlinear dynamic
systems (J.E. Slotine, et al. 1991). However, it inherits a discontinuous control action and hence chattering
phenomena will take place when the system operates near the sliding surface. One of the common solutions
for eliminating this chattering effect is to introduce a boundary layer neighboring the sliding surface (V.I.
Utkin. 1977). This method can lead to stable closed loop system without the chattering problem, but there
exists a finite steady state error due to the finite steady state gain of the control algorithm..

The adaptive fuzzy controller incorporating the fuzzy logic and the sliding mode control (SMC) (V.I.
Utkin. 1977) for ensuring stability and consistent performance is an active research topic of the fuzzy control.
One of the advantages of this control strategy is insensitive to modeling uncertainty and external disturbances.
Many adaptive fuzzy sliding mode control (AFSMC) schemes have been proposed and the chattering
phenomena in the controlled system can be avoided by using the fuzzy sliding surface in the reaching condition
of the SMC (S.W.Kim, et al. 1995). However, these features make the number of fuzzy rules increasing with
the complexity of the fuzzy sliding surface involved. As the sliding mode control law can separated into two
parts i.e. the equivalent control and the switching control (V.I. Utkin. 1977). The role of the controller is to
schedule these two components under different operating conditions. In order to improve the steady state
performance of the AFSMC, an adaptive fuzzy logic controller combining a proportional plus integral (PI)
controller and the SMC is considered in this paper. The proposed control scheme provides good transient and
robust performance. Moreover, as the proposed controller integrates the PI control with the SMC, the chattering
phenomenon can be avoided. In this paper, it is proved that the closed-loop system is globally stable in the
Lyapunov sense and the system output can track the desired reference output asymptotically with modeling
uncertainties and disturbances.

2 – Problem Statement:
Consider a general class of SISO n-th order nonlinear systems as follow form (L.X. Wang. 1993):

y = x   (1)
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where f and g are unknown nonlinear functions,                                          is the state vector of

the systems which is assumed to be available for measurement, u0R and y0R are the input and the output of
the system, respectively, and d(t) is the unknown external disturbance. We have to make an assumption that

have  upper  bound D, that is, d(t)#D. We require the system (1), to be controllable, the input gain 

is necessary. Hence, without loss of generality, we are assumed           . The control problem is to obtain

the state x for tracking a desired state xd in the presence of model uncertainties and external disturbance with
the tracking error

  (2)

Define a sliding surface in the space of the error state as

  (3)

where                     are the coefficients of the Hurwitiz polynominal                              , i.e. all

the roots are in the open left half-plane and λ is a Laplace operator. If the initial condition e(0)=0, the tracking

problem        can be considered as the state error vector remaining on the sliding surface s(e)=0 for all >0.

A sufficient condition to achieve this behavior is to select the control strategy such that

  (4)

The system is controlled in such a way that the state always moves towards the sliding surface and hits
it. The sign of the control value must change at the intersection between the state trajectory and sliding surface.

Consider the control problem of nonlinear systems (1), if       and        are known. The SMC inputuC
guarantees the sliding condition of (4).

  (5)

Where

  (6)

Let the Lyapunov function candidate defined as

  (7)

Differentiating (7) with respect to time,  along the system trajectory as

  (8)
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Hence the SMC inputuC guarantees the sliding condition of (4). It is obvious that in order to satisfy the

sliding condition, a hitting control term  must be added. i.e.               where

  (9)

 (10)

However, f and g are unknown, it is difficult to apply the control law (5) for an unknown nonlinear plant.
Moreover, the switching-type control term usw will cause chattering problem. To solve these problems, we
propose the Adaptive Type-2 Fuzzy Sliding Mode Control Algorithm.

3 – AdaptiveType-2 Fuzzy Sliding Mode Control:

The result in (5) is realizable only while        and        are well known. However,        and        

are unknown an the ideal controller (5) cannot be implemented. We replace        and         by the type-2

fuzzy logic system. Moreover, we employ PI control term in order to avoid chattering problem. The input and
output of the continuous time PI controller is in the form of:

 (11)

kp and ki are control gains to be designed. Equation (11) can be rewritten as

 (12)

where                   is an  adjustable parameters during the control produce and                      is a

regressive vector. In order to derive the SMC law (5), we use fuzzy logic system to approximate the unknown

function      ,        and  employ  an  adaptive PI control  term to attenuate chattering action problem and

improve steady state performance.
Hence, the resulting control law is as follows:

 (13)

 (14)

 (15)

In order to avoid the chattering problem, the switching control usw is replaced by the PI control action 

when the state is within a boundary layer        and the control action is kept at the saturated value when the

state  is  outside  the  boundary layer.  Hence,  we set                          when        where Φ is the

thickness of the boundary layer and ωmax is the maximum approximation error of the type-2 fuzzy system.

Theorem  1: Consider the control problem of the nonlinear system (1). If control (13) is applied       ,ˆ ˆ,f g
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and    are given by (14), (15) and (12), the parameters vector          and          are adjusted by the adaptivep̂ ,f g  ,f p 

law (16) , (17) and (18). The closed loop system signals will be bounded and the tracking error will converge
to zero asymptotically.

 (16)

 (17)

 (18)

Proof : Define the optimal parameters of type-2 fuzzy systems

 (19)

 (20)

 (21)

where  Ωf,  Ωg  and  Ωp  are  constraint  sets  for          ,  and      ,  respectively. Define the minimum,f g  p

approximation error.

 (22)

Assumption 1: 

where Mf g, Mg, and Mp are pre-specified parameters. And assume the fuzzy parameters         and the PI ,f g 

control parameter     never reach the boundaries. Then, we havep

Where                   and   
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Now consider the Lyapunov candidate

 (24)

The time derivative of V along the error trajectory (24) is

          

                  

 

 (25)

Where          ,            and   

Substitute (16) , (17) and (18) into (19), then we have

 (26)

since ω it  the  minimum  approximation error, (26) is the best we can obtain. Therefore, all signals in the

system are bounded. Obviously, if      is bounded, then      is also bounded for all. Since the reference signal

    is bounded, then the system states  is bounded as well. To complete the proof and establish asymptotic

convergence of the tracking error, we need proving that s60 as t64. Assume that           then equation (26)
can be rewritten as

 (27)

Integrating both sides of (27), we have
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 (28)

then  we  have 0L1. Form  (26),  we  know  that s  is bounded and every term in (23) is bounded. Hence,

         , use  of  Barbalat’s  lemma Sastry and Bodson, (1989).  We  have s60 as t64 the  system  is  stable

and the error will asymptotically converge to zero. The adaptive fuzzy control system is shown in Fig.1

Fig. 1: The block diagram of the proposed controller

Remark 1: The above stability result is achieved under the assumption 1 that all the parameters boundness
is ensured. To guarantee the parameters are bounded. The adaptive laws (16), (17) and (18) can be modified
by using the projection algorithm (L.X. Wang. 1997), (L.X. Wang. 1993). To summarize the above analysis,
the step-by-step procedures for the adaptive fuzzy sliding mode control algorithm is proposed as follow.

Design Procedure:

Step 1. Select proper initial values of PI parameters
Step 2. Specify the desired coefficients c1, c2, ... ,cn-1 such as in (3).
Step 3. Select the learning coefficients γ1 ,γ2 and γ3

Step 4. Define mi type-2 fuzzy sets    for linguistic variable xi and the membership functions     is uniformly

cover the universe of discourse, for I= 1,2, ..., n.                        
Step 5.Construct the fuzzy rule bases for the fuzzy System        and          .

Step 6. Construct the fuzzy systems                              and                              .

Step 7. Construct the control law (13) with the adaptive law in (16) , (17) and (18).                         
                                 
Step 8. Obtain the control and apply to the plant, then compute the adaptive law (16) , (17) and (18) to adjust

the parameter vector         , and    .,f g  p
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4 – Simulations and comparing two method of typ-1 and type-2:
Now we  want to apply proposed tracking controller for inverted pendulum demonstrated in Fig. 2. The

control objective is to maintain the system to track the desired angle trajectory, 

Fig. 2: Inverted pendulum system

The dynamic equations of such system are given by (K. Chafaa, et al. 2007).

 (29)

Where x1 is the angular displacement of the pendulum, x2 is the angular velocity of the pendulum, m is the
mass  of  pole, mc is the  mass  of the cart, I is the half-length from the center of gravity to the pivot and

              is  the  acceleration  due  to  gravity,  in  Simulations;  The  system parameters are given as

                             , and  is  assumed  to be a square wave with amplitude ±0.5 and the period 2π.

Choose the sliding surface as            and c1 = 6. The initial values of parameters     are set by kp(0)=10p
and ki(0) = 20.

Now we consider two following conditions:
1 – There is no uncertainty in system.
2 – There is uncertainty in system.

In froming   , we suppose :

• For x1, there is p1 fuzzy sets than p1 = 5
• For x1, there is p2 fuzzy sets than p2 = 5

So fuzzy rule base for  modeling includes 25 rules

And in froming   , we suppose:

• For x1, there is p1 fuzzy sets than p1 = 5
• For x1, there is p2 fuzzy sets than p2 = 5 
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So fuzzy rule base for g modeling includes 25 rules.

4.1. consider at the situation when there is no uncertainty in system
4.1.1. tracking control to system modeling by AT1FSMC

We assume that type-1 fuzzy rule base for description g,f is as follows:

And we define Membership Function (MF) in this rule base as follows :

Which these functions cover interval of              as complete and normal. In Fig. 3, above Membership 

Function is demonstrated on primary variable z which can be x1 or x2.
So there are 25 rules for estimating each of f and. The initial consequent parameters of fuzzy are chosen

randomly in the interval [0,52]. Let the learning rate γ1 = 60, γ2 = 4 and γ3 = 800. We select initial condition

as           .

Moreover, a Gaussian noise with mean zero and variance of 0.025 was injected at the output of the system.

Fig. 3: Fuzzy membership function for modeling inverted pendulum system.
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Fig. 4: Show the simulation results for the first condition with type-1 modeling.

We find from figure that tracking performance is good even presence of noise and disturbance.

Fig. 5: Desired output and system output (with type-1 modeling)

After beginning, the parameters θf 0 R25 are adjusted by the adaptive law (16) and the parameters θg 0
R25 are adjusted by  the adaptive law (17). Finally in Fig.4 , it's observed  that the closed loop system output
(y=x1) will be converged to desired output (ym).

4.1.2.  tracking control to system modeling by AT2FSMC:
We assume that type-1 fuzzy rule base for description g,f  is as follows :

And we define Membership Function (MF) in this rule base as follows:
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Where 

And these functions cover interval of               as complete and normal. In Fig. 5, above Membership

Function is demonstrated on primary variable z which can be x1 or x2.

                               

Fig. 6: Interval type-2 fuzzy membership function (with variable average) for modeling inverted pendulum
system

By considering previous design parameters, After beginning, the parameters θf 0 R25 are adjusted by the
adaptive law (16) and the parameters θf 0 R25 are adjusted by  the adaptive law (17). Finally in Fig.6, it's
observed that the closed loop system output (y=x1) will be converged to desired output (ym).
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Fig. 7: Desired output and system output (with type-2 modeling)

In table. 1, summary of results in first condition is demonstrated separately according to type of modeling

(type-1 and type-2), and for the condition of                 . The  criterion for  comparing  is this table is

considered Mean of Squares of Error (MSE) between the signals ym and y in the interval 0 to 20 seconds.

Table. 1: The results obtained in second condition and comparing of two methods with MSE criterion (with uncertainty in the length
of pole)

Syestem Modelling Type-1  Fuzzy Type-2  Fuzzy (Membership function with variable average)
MSE 27.952e-005 5.8649e-005

4.2. Consider at the Situation When There Is Uncertainty in System:
We examine two following methods separately:

• Applying uncertainty to the mass of pole (m).
A Gaussian noise with mean zero and variance of  was injected at the mass of pole. It shuld be noted

that the mass of pole is exposed to this noise in continuous time.

• Applying uncertainty to the length of pole (l).
A Gaussian noise with mean zero and variance of  was injected at the length of pole. And the length of

                pole  is  exposed  to this noise in continuous time. It shuld be noted that the length of pole

is indefinite without changing its mass.

4.2.1. tracking control to system modeling by AT1FSMC:
4.2.1.1. Applying uncertainty to the mass of pole:

In Fig.7, the manner of tracking of reference signal by the controlled system output with ATIFSMC, for
the initial position of is demonstrated. It should be noted that design parameters are assumed the same for all
the conditions during simulation. 

4.2.1.2. Applying uncertainty to the length of pole:
In Fig.8, the manner of tracking of reference signal by the controlled system output with ATIFSMC, for

the initial position of                is demonstrated.
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4.2.2.  tracking control to system modeling by AT2FSMC:
In this section, type-2 fuzzy modeling by using MF provided in Fig.5, is done and simulation results for

each of uncertainties applied to the amass and the length of pole is demonstrated separately for this MF.

Fig. 8: Desired output and system output (with type-1 modeling)

Fig. 9: Desired output and system output (with type-1 modeling)

4.2.2.1. Applying Uncertainty to the Mass of Pole:
In Fig.9, the  manner of  tracking  of reference signal by the controlled system output with AT2FSMC

and with  interval  type-2  fuzzy membership function (with variable  average),  for  the initial  position of

              is demonstrated.
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Fig. 10: Desired output and system output (with type-2 modeling)

4.2.2.2. Applying Uncertainty to the Length of Pole:
In Fig.10, the manner of tracking of reference signal by the controlled system output with AT2FSMC and

with interval type-2 fuzzy membership function (with variable average), for the initial position of 

               is demonstrated.

Fig. 11: Desired output and system output ( with type-2 modeling)

In table.2, the summary of obtained results for the second condition, separately according to type of
modeling (type-1 and type-2) for the condition that uncertainty is applied to the length of pole is shown, and

for the condition of              . The criterion for comparing is this table is considered Mean of Squares of

Error (MSE) between the signals ym and in the interval 0 to 20 seconds.
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Table. 2: The results obtained in second condition and comparing of two methods with MSE criterion (with uncertainty in the length
of pole)

Syestem Modelling Type-1 Fuzzy Type-2 Fuzzy(Membership function with variable average)
MSE 0.0035 2.7325e-004

Table. 3: The results obtained in second condition and comparing of two methods with MSE criterion (with uncertainty in the mass of
pole)

Syestem Modelling Type-1 Fuzzy Type-2 Fuzzy (Membership function with variable average)
MSE 0.0014 1.6362e-004

In table.3, as same of table.2, the summary of obtained results for the second condition, this time for the
condition that uncertainty is applied to the mass of pole is shown.

Conclusions:
In this paper, an adaptive type-2 fuzzy sliding control algorithm has been proposed for a class of unknown

nonlinear systems. The proposed control scheme provides good transient and robust performance. Moreover,
the proposed controller can be avoided than the chattering phenomenon. The Lyapunov stability theorem has
been used to testify to the asymptotic stability of the closed-loop system. As we can see in the tables of the
results in the first and second conditions, type-2 fuzzy system with type-2 membership function (T2MF) has
better tracking performance than type-1 fuzzy system, either in condition with uncertainty or without
uncertainty.
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