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Evaluation of Fuzzy Linear Regression Models by Parametric Distance
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Abstract: Fuzzy linear regression models can provide an estimated fuzzy number that has a

fuzzy membership function. If a point that has the highest membership value from the estimated

fuzzy number is not within the support of the observed fuzzy membership function, a decision-

maker can have high risk from the estimate. In this study a new distance, between fuzzy

numbers is proposed. On the basis of this distance a fuzzy least square regression model is

constructed for the case of polynomial-type dependent variable and ordinary input variables.
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INTRODUCTION

Regression analysis is a statistical tool used to find a relation between two or more quantitative

variables. Based on the relation, one variable can be predicted from the other, or others. The concept

of a relation can be distinguished in to functional relation and statistical relation. If a mathematical

formula can express the relation between two variables, the relation is functional. Given a particular

value of the independent variable, the functional relation can indicate the corresponding value of the

dependent variable. A statistical relation, unlike a functional relation, cannot give a perfect corresponding

value of the dependent variable, given a value of independent variable. The term regression is referred

to as a description of statistical relations between variables. A statistical regression model is generally

based on the following two characteristics: (1) there is a probability distribution of a tendency of the

dependent variable for each level of the independent variable; (2) the means of these probability

distributions vary in some systematic fashion with the values of the independent variables. However,

sometimes it is difficult to find a probability distribution of the dependent variable, especially when the

dependent variable tends to be influenced by subjective judgment such as human decision-making. Fuzzy

linear regression, introduced by (Tanaka et al. 1982), is based on a possibility distribution that reflects

the membership values of the dependent variable rather than a probability distribution. Also, the relation

between the dependent variable and independent(s) is defined by using fuzzy concept rather than

statistical concept. Regardless of the underlying assumptions, one of the most important objectives of

a regression model is to estimate the value of the dependent variable associated with independent

variable(s) as close to the observed data as possible. In a fuzzy regression fuzzy model, the degree

of the fitting of the estimate fuzzy linear model to the given data was defined by -level of the

possibility distribution (Tanaka et al. 1982). Using a metric defined over triangular fuzzy number, the

authors in (Diamond, 1987) suggested a model of fuzzy least squares. For Diomand, the objective

function was minimization of the distance  between the experimental and predicted data. In the latter

study a fuzzy regression model with fuzzy/crisp free variables and fuzzy/crisp dependent variables using

a least square approach was proposed. A fuzzy least squares regression model with fuzzy/crisp inputs

and outputs was also considered in (D’urso, 2003). The case of non-symmetric triangular fuzzy numbers,

a case that is a generalization of a linear regression model with coefficients in the form of symmetric

fuzzy triangular type numbers, was analyzed in (Yen, et al. 1999). The least squares problem with

fuzzy data and an -type regression model was considered in(Ruoning, 1997). In (Kim, et al. 1998) a

fuzzy least squares regression model was proposed with minimization of the distance between the

experimental and predicted fuzzy values of the dependent variable. But in the case in which the support

of the fuzzy numbers do not intersect, the distance (Kim, et al. 1998)  always yields the same result,

regardless of any dependence on the relative position of the fuzzy numbers. The distance used in

(Diamond, 1987) is not sensitive to fuzzy numbers that are not of triangular form. The distance
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considered in the present study is similar to the distance in (Ma. M, et al.  2002), though the latter

studies do not make use of the distribution function of the importance of the degrees of membership.

In the present paper a parametric distance between fuzzy numbers is proposed. This distance is universal

and flexible and is capable of expressing the strategy of a decision maker and is also sensitive to any

form of membership function of fuzzy numbers. On the basis of this distance a fuzzy least squares

regression model is constructed for the case of polynomial type dependent variable. The parametric

distance used in the present paper makes it possible to express a strategy of estimating fuzziness for

individuals responsible for making decision in the course of determining the distance between fuzzy

individuals. In additions, such a distance is sensitive to any form of the membership function of a

fuzzy number.

2. Basic Definitions and Notations:

The basic definitions of a fuzzy number are given in  (Zimmermann, 1991; Saneifard, 2009) as

follows:

Definition 1: 

A fuzzy number A is a mapping A(x): U  6 [0,1] with the following properties:  

1. A is an upper semi-continuous function on U  , 

1 22. A (x) = 0 outside of some interval [a ,b ] dU, 

1 2 1 2  1 23. There are real numbers a ,b  such as a ,< a < b  < b  and   

1 2C A (x) is a monotonic increasing function on [a ,a ]

1 2C A (x) is a monotonic decreasing function on [b ,b ]

2 1C A (x) = 1 for all in [a ,b ]. 

Let U  be the set of all real numbers. The researchers assume a fuzzy number A that can be

expressed for all x å U  in the form 

where a,b,c,d are real numbers such as a < b < c < d and g is a real valued function that is

increasing and h right continuous and  is a real valued function that is decreasing and left continuous.

Support function is defined as follows:

where              is closure of set 

3. Concept of Parametric Distance:

Suppose F denotes the space of fuzzy numbers. We will assume that the fuzzy number A is

represented by means of the following -representation: 

where 
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Here,                 is a monotonically non-decreasing                and is a monotonically 

non-increasing left-continuous functions. The functions L (.) and R (.) express the left and right sides

of a fuzzy number, respectively. In other words, 

where              and              denote quasi-inverse functions of the increasing and

decreasing parts of the membership functions ì (t), respectively.

Definition 2: 

The following values constitute the weighted averaged representative and weighted width, respectively,

of the fuzzy number A: 

and 

Here 0 < c < 1 denotes an "optimism/pessimism" coefficient in conducting operations on fuzzy

numbers. The function f (á) is nonnegative and increasing function on [0,1] with f (0) = 0, 

f (1) = 1and .             The function  is also called weighting function. In actual applications,

function  can be chosen according to the actual situation. In practical cases, it may be assume that

(3.1)

Definition 3:

For arbitrary fuzzy numbers  and  the quantity 

(3.2)

is called the TRD distance between the fuzzy numbers A and B.

4. Fuzzy Least Squares Regression:

The following is a mathematical description of the classical regression model:

ij jWhere X  is the input value of the j-th variable of the i-th experiment and â , regression coefficient

ij j ifor the input j. f (X  , â ) is a predicted value for the experimental output Y . For the case of a linear
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regression with n independent variables, the mathematical model assumes the form 

It is well known that the following minimization laws represent the method of least squares for

the classical regression model:

A linear regression model with fuzzy regression coefficients and fuzzy value of the errors may be

written as 

  (*)

i i,Where Y  is a dependent variable, A  i = 1,..., n are unknown coefficient in the form of fuzzy

ij inumbers, X , i = 1,... N; j = 1,.. n, are ordinary (nonfuzzy) independent variables and å  are errors.

The two operations (+) and (*) generalized arithmetic operation on fuzzy numbers.

The fuzzy numbers that are considered in the present article are of polynomial form. For a concrete

jfuzzy numbers A  the membership function of such numbers may be written as

Here the parameter s > 0 specifies the type of convexity of the sides of a fuzzy number, , ,

jand A  are the values of the mode, left point and right point of the boundary of the support of the +

fuzzy number, i.e.

and .

Setting

and

Formula (*) may be rewritten in the following form:

,
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The predicted fuzzy value of the dependent variable    may be written thus:

Where           is the value of the mode and   and           are

respectively, the left and right deviation, moreover,         

The deviation between the experimental and predicted fuzzy values will also have a fuzzy value, 

, i =1,...., N.

It is well known that in the least squares method it is necessary to minimize the sum of the

squares of the deviation for  experiments, i.e.

     (**)

In the case where the experimental and predicted values of the dependent variable are fuzzy

numbers, formula (**) may be rewritten in the following form using the TRD distance:

.

i i iIn the latter formula I (Y ) and I (Y* ) are the weighted averaged representatives while D (Y ) and 

iD (Y* ) are the weighted averaged width of the experimental and predicted fuzzy values, respectively.

Let us suppose that the distribution function of the importance of the degrees f (a) has the form

as in (3.1). Then the fuzzy coefficient in the form of polynomial-type fuzzy numbers will have the

form

Hence,

                                                            .

There is,

(3.3)
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where the integral               is the beta function           . Using the gamma function we 

may write 

And, finally, recalling that                          and setting 

(3.4) 

Formula (3.3) may be written in the following form: 

The weighted averaged representative of a dependent variable may be represented as follows:

i0Where x  = 1,i = 1,..,N. In view of the normalization condition (3.1) for the distribution function of

the importance of degree, we may write 

 

In view of (3.4), the latter formula may be rewritten thus: 

i iThe weighted averaged width of the experimental D (Y ) and predicted  D (Y* ) values of the dependent

variable maybe calculated in the following way:

                   .

Similarly,
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      =

Thus, the fuzzy least squares regression model based on TRD distance may be represented in the

form

5. Conclusion:

In this article a distance between fuzzy numbers is proposed. On the basis of this distance a fuzzy

regression model is constructed for the case of polynomial type dependent variable and ordinary input

variables. It should be noted that fuzzy numbers possessing such a polynomial form are quite universal

and encompass the majority of cases that are considered in the literature of fuzzy numbers.

REFERENCES

Diamond, E., 1987. Fuzzy Least Squares Fitting of Several fuzzy Variables, in Analysis of

Information, CRC Press, Tokyo., pp: 329-331.

D’urso, P., 2003. Linear Regression Analysis for fuzzy/Crisp Input and Fuzzy/crisp Output Data,

Computational Statistics and data Analysis., 42: 47-72.

Kim., B., R.R. Bishu., 1998. Evaluation of Fuzzy Linear Regression Models by Comparing

Membership Functions, Fuzzy Sets and Systems., 100: 343-352.

Ma, M., M. Kandel, M. Friedman, 2002. A New Approach for Defuzzification, Fuzzy Sets and

Systems., 128: 351-356.

Ruoning., X., 1997. S-curve Regression Model in Fuzzy Environments, Fuzzy Sets and Systems.,

90: 317-326.

Saneifard., R., 2009. Ranking L-R fuzzy numbers with weighted averaging based on levels, Int. J.

Industrial Mathematics., 2: 163-173.

Saneifard., R., 2009. A method for defuzzification by weighted distance, Int. J. Industrial

mathematics., 3: 209-217.

Tanaka, H., H. Ishibuchi, 1992. Possibilistic Regression Analysis Based on Linear Programming, in:

J.Kacprzyk. Fuzzy Regression Analysis, Omnitech Press, Heidelberg., pp: 47-60.

Tanaka, H., S. Uejima, K. Asay, 1982. Linear Regression Analysis With Fuzzy Model, IEEE Trans.

System, Man Cybernet., 12: 903-907.

Yen. K.K., S. Ghosray., G. Roig., 1999. A Linear Regression Model Using Triangular Fuzzy

Number Coefficient, Fuzzy Sets and Systems., 106: 167-177.

Zimmermann, H.J., 1991. Fuzzy sets theory and its applications, Kluwer Academic Press, Dordrecht.

267


