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Abstract: This paper presents a new method for tuning the weighing functions to design an H4

controller. Based on a particle swarm optimization (PSO) algorithm the, weighting functions are tuned.
The PSO algorithm is used to minimize the infinity norm of the transfer functions matrix of the
nominal closed loop system to obtain the optimal parameters of the weighting function. This method
is applied to a typical industrial pneumatic servo actuator controlled by a jet pipe valve. The
pneumatic system nonlinearity and system parameters uncertainty are the main problems in the design
of a desired controller for this plant. A linear model of the plant at certain operating point is derived
and the structured (parametric) perturbations in the plant coeficients are taken into account. This
method ensures an optimal robust stability and robust performance for the pneumatic servo actuator
system. Simulation results are presented to verify the objectives of this method.
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INTRODUCTION

A control system is robust if it remains stable and achieves certain performance criteria in the presence
of possible uncertainties. The robust design is to find a controller, for a given system, such that the closed loop
system is robust. The H4  optimization approach and its related approaches, being developed in the last two
decades and still an active research area, have been shown to be effective and efficient robust design methods
for linear, time invariant control systems (Da-Wei et al, 2005).

The goal of robust systems design is to retain assurance of system performance in spite of model
inaccuracies and changes. A system is robust when it has acceptable changes in performance due to model
changes or inaccuracies. A control system is robust when (i) it has low sensitivity, (ii) it is stable over the
range of parameter variations and (iii) the performance continues to meet the specification in the presence of
a set of changes in the system parameters (Dorf, 2001).

H4 is one of the most known techniques available nowadays for robust control. It is a method in control
theory for the design of optimal controllers. Basically, it is an optimization method that takes into consideration
a strong definition of the mathematical way to express the ability to include both classical and robust control
concepts within a single design framework. It is known that H4  control is an effective method for attenuating
disturbances and noise that appear in the system. It has been proven to be one of the best techniques in linear
control system (Alok, 2007). Robust control techniques such as modern H4  and classical quantitative feedback
theory (QFT) have received comparatively little attention in the fluid power literature, especially with regard
to pneumatic systems (Mark and Nariman, 2004).

High performance position control of pneumatic actuators remains a difficult task. In most industrial
applications, safety requires that the pressure of the air supply be kept low, which makes it difficult to design
high bandwidth systems. Moreover, low supply pressure tends to limit the achievable actuator stiffness, which
affects the ability of the servomechanism to reject disturbing loads. Nonlinear control valve flows and
uncertainties in the plant parameters also complicate the design of high performance pneumatic servos. On the
other hand, the pneumatic actuators are widely employed in position and speed control applications when
cheap, clean, simple, and safe operating conditions are required. In recent years, low cost microprocessors and
pneumatic components became available in the market, which made it possible to adopt more sophisticated
control strategies in pneumatic system control (Jihong et al, 2007). The pneumatic cylinders can offer a better
alternative to electrical or hydraulic actuators for certain types of applications and the pneumatic actuators
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provide the previously enumerated qualities at low cost. They are also suitable for clean environments and safer
and easier to work with. However, position and force control of these actuators in applications that require high
bandwidth is some how difficult, because of compressibility of air and highly nonlinear flow through pneumatic
system components. A typical pneumatic system includes a force element (pneumatic cylinder), a command
device (valve), connecting tubes, and piston, pressure and force sensors. The external load consists of the mass
of external mechanical elements connected to the piston and perhaps a force produced by environmental
interaction (Edmond and Yildirim, 2001). A schematic diagram of the pneumatic actuator system is shown in
Figure 1.

Fig. 1: Schematic diagram of pneumatic servo actuator system.

In this paper a method for tuning an H4  controller weights is presented. An optimal H4  controller will
be obtained according to minimization of the required cost functions using particle swarm optimization (PSO),
which is used to minimize the cost function as a powerful optimization method with high efficiency in
comparison to other methods. This method tries to find the optimal values in a wide range of searching space
through the interaction of particles in the population.

The PSO has become one of the most powerful methods for solving optimization problems. The method
is proved to be robust in solving problems featuring nonlinearity and nondifferentiability, multiple optima, and
high dimensionality. The advantages of the PSO are its relative simplicity and stable convergence characteristic
with good computational efficiency (Majid et al, 2009).

2. Pneumatic Servo Actuator:
a. System Description:

The purpose of the servo actuator unit is to move the load by displacement (yP) in compliance with
command signals from the control section. Figure 1 shows the basic construction and operation of the electro-
pneumatic servo actuator.

The source of power used in this type of actuator is compressed air supplied to the jet pipe. An
electromagnetic force generated by the flowing electric current rotates the jet pipe. Reacting to the pressure
differential in the cylinder cavities, the piston together with the rod moves with speed dependent on the
airflow, air pressure and load. The diameter and stroke of the piston are 80mm and 50mm respectively. Output
piston feedback is provided by a linear potentiometer, the slider of which is driven by the piston. The servo
unit consists of a control surface actuator, a feedback transmitter, a polarized jet relay, and a power amplifier
(Hazem et al, 2008). The minor loop of the servo shown in Figure 2 is used to ensure a proportional
movement with respect to input commands.

b. System Mathematical Model and Dynamics:
The analysis of pneumatic actuators requires a combination of thermodynamics, fluid dynamics and the

dynamics of motion. For constructing a mathematical model, three major considerations must be, involved
(Hazem et al, 2009).
1. The mass flow rates through the valve.
2. The pressure, volume and temperature of the air, in cylinder.
3. The dynamics of the load.
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Fig. 2: Block diagram of servo actuator system.

The valve is a four port pneumatic jet pipe valve. This valve is treated as equivalent to two three-port
valves, one of each side of the cylinder. Considering the left hand side of the cylinder, Figure 1, and the
thermodynamic system is enclosed in the box, or control volume. Many studies have shown that for adequate
models for controller design an isothermal behavior of the air may be assumed. Starting with the definition
of the density, using the ideal gas equation and assuming an isothermal process the mass flow rates equations
can be written as (Peter, 2007):

   (1)a a a a aM V V   

   (2)b b b b bM V V    

Where         and        are the mass flow rates in (chambers (a) and ((b)) respectively, ρ is the density aM bM

of the air, Va and Vb are the volumes in chambers a and b.
For a symmetric cylinder the volumes in chambers a and b are given by:

   (3)a o PYPV V A 

   (4)b o PY PV V A 

where yp is the position displacement, Ap is the piston area, Vo is the air volume in cylinder when the
piston in mid point, Va and Vb are the volumes in chambers a and b, respectively.

Differentiating equations (3) and (4) and substitute them in (1) and (2) the following equations will be
obtained:

   (5)
1 1

( )a a o yp a P
a a

M P V A P Ay
RT RT 

    

   (6)
1 1

( )b b o pyp b P
b b

M P V A P Ay
RT RT 

    

where R is the gas constant, D is the specific heat ratio, Ta and Tb are the temperatures in chambers a and b
respectively, Pa and Pb are the pressures in chambers a and b respectively.

Rearranging the equations (5) and (6) and adding the load dynamics equation that influences the overall
performance of the piston motion, the system equations will be:
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   (7)
( ) ( )

a pa
a a P

o p p o p p

P ART
P M y

V A y V A y


 

 
  

   (8)
( ) ( )

b pa
b b P

o py p o py p

P ART
P M y

V A V A


 

 
  

   (9)
1 1p p

p a b L f

A A
y P P F F

M M M M
   

where M, FL and Ff are the load mass, disturbing force and friction force respectively.
The equation that governs the mass flow rate of air through each control valve orifice is nonlinear equation

and not suited for controller design. If a fast servo valve is used, the dynamics of the valve can be neglected.
Assuming for the moment a positive input signal to the valve, a short line between valve and cylinder and
chamber pressures of about half the supply pressure, the control valve equations will be simplified to be (Peter,
2007):

 (10)
2
S

a V

P
M K u

 (11)
2
S

b V

P
M K u

where KV is the valve coefficient, PS is the supply pressure and u is the electric valve input
signal respectively.

Substituting equations (10) and (11) in equations (7) and (8) and combining the Laplace transformations
of equations (7), (8) and (9) allows the operating point dependant transfer function model of the open loop
system to be written as:

yP(s)= G(s)U(s) - Gd (s)Fd (s) (12)

where

 (13)2
2

2

( )
2 ( )

( )

p

o

p i

o

RTA
K

MV
G s

A Pf
s s s

M MV






 

and

 (14)2
2

1

( )
2 ( )

( )
d

p i

o

MG s
A Pf

s s s
M MV




 
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where                   
2
S

V

P
K K

This system considered, a four-port valve is used to control a double acting through rod cylinder. There
are three nonlinearities in the pneumatic servo system. The first one is the nonlinear characteristic of the valve,
and the other two nonlinearities are the volume and bulk modulus when they are used as coefficients in the
equations. The nominal values of system parameters are given in Table 1 (Hazem et al, 2008).

Table 1: The nominal system model parameters.

3. Uncertain Pneumatic Actuator System Model:
The pneumatic servo actuator system can be represented as shown in Figure 3. The parameters a, b and

c can be defined as:

 (15),
2 2

i i i

p p p

MV fV Ap
a b and c

K KA RT K KA RT K KRT 
  

The three physical parameters a, b and c are not known exactly therefore, they can be assumed that their
values are within certain range. That is,

 (16)(1 ), (1 ), (1 )a a b b c ca a p b b p c c p       
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Fig. 3: Block diagram of pneumatic servo actuator system with its main parameters.

where     =0.1327×10-4,     =0.1295×10-4,     =0.01585 are the nominal values of a, b and c, pa, pb and pc a b c

and δa, δb and δc represent the possible perturbations on these parameters. In this paper we let pa =0.999246,
pb=0.64, pc=0.174 and -1# δa, δb, δc #1. Not that this represent up to 99.9246% uncertainty in the parameter
a, 64% uncertainty in the parameter b and 17.4% uncertainty in the parameter c.

The three constants blocks in Figure 3 can be replaced by block diagrams in terms of     , pa, δa , etc., a

in a unified approach. The quantity 1/a can be represented as an upper linear transformation (LFT) in δa as:

 
11 1 1

(1 ) ( , )
(1 )

a
a a a u a a

a a

P
p F M

a a p a a
  


    



with   (17)

1

1

a

a

a

p
aM

p
a

  
  
   

Similarly, the parameters                       and                       can be  represented as an upper (1 ),b bb b p   (1 )c cc c p  

LFT in δb, and δc where b=Fu (Mb,δb) and c= Fu (Mc , δc)

with  (18)
0 0

,b c

b c

b c
M and M

p b p c

   
    
      

Figure 4 shows the block diagram of the pneumatic system with uncertain parameters. The inputs and
outputs of δa, δb and δc are denoted as ya , yb, yc and ua ,ub , uc respectively.

Let Gp denotes the input/output dynamics of the pneumatic system, which takes into account the
uncertainty of parameters. Gp has four inputs (ua ,ub , uc , u), four outputs (ya , yb, yc , y) and three states
(x1,x2,x3).
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Fig. 4: Block diagram of the pneumatic system with uncertain parameters.

The state space representation of Gp is (Alok, 2007):

 (19) 

1 2

1 11 12

2 21 22
p

A B B

G C D D

C D D

 
   
  

where

 

0
0 1 0 0 0 0 0

0 0 1 , 1 0 0 0 , 2 0 , 1 0 0

1 0 0
0

c b

a a

A B B C b

p pc b ca cpa
aa aa a

 

   

  


                                               

(20)

1

11 0 , 12 0 , 2 [1 0 0], 21 [0 0 0], 22 0

1 0

0 a

D D C D D

a

    

   
   
   
   
   
   
    

It is clear that the system matrix Gp has no any uncertain parameter and depends only on       , pa , pb,abc
pc and on the original system parameters.

The uncertain behavior of the original system can be described by an upper LFT representation y =
Fu(Gp,Δ)u with diagonal uncertainty matrix Δ as shown in Figure 5. The open loop frequency response of the
perturbed system is shown in Figure 6. These characteristics show that the bandwidth of the system decreases
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Fig. 5: Upper LFT representation of the system

with parameters variations until the system becomes slower. On the other hand, the phase margin also
decreases that make the system tends to oscillate and be unstable in some cases.

4. Controller Design:
4.1 Bilinear transform and Weighting functions Selection:

Since the proposed system has jw-axis pole, the H4  controller, if it is reliably computed, would have
marginally stable closed loop pole at the corresponding jw-axis location. This problem led to singularities in
the equations that determine the state space realization of H4  control law. So a simple bilinear transform has
been found to be extremely useful when used with robust control synthesis. This transformation can be
formulated as a jw-axis pole shifting transformation (Richard and Michael, 1997):

 (21)1

2

1

s p
s

s
p









where p1 < 0 and selected to be 0.1, p2 is selected to be infinity. This is equivalent to simply shifting the
jw-axis by p1 units to the left. The H4  controller is obtained for the shifted system then it is shifted back to
the right with the same units.

The design requirements and objectives for pneumatic servo actuator system in this paper is to find a
linear, output feedback control u(s) K4 (s)y(s) which ensures that the closed loop system will be internally
stable. Also, the required closed loop system performance should be achieved for the nominal plant Gp. 

The selection of weighting functions and weighting gains for specific design problem is not an easy
procedure and often needs many iterations and fine-tuning and it is hard to find general formula for the
weighting functions that will work in every case (Bittar and Sales, 1998). So to obtain a good control design,
it is necessary to select suitable weighting functions. The performance and control weighting functions formulas
used in this paper are (Richard and Michael, 1997; Zhou and Doyle, 1998):

 (22)

2 2
1

2 2
2

( 2 )
( )

( 2 )
c c

p

c c

s w s w
W s

s w s w

   
  

 


 

 (23)( )

k

bc

k
u

u k
bc

w
s

M
W S

s w

  
 
 
 
 

where β is the d.c. gain of the function which controls the disturbance rejection, α is the high frequency
gain which controls the response peak overshoot, wc is the function crossover frequency, ζ1 and ζ2 are the
damping ratios of crossover frequency, wbc is the controller bandwidth, Mu is the magnitude of K4S, and g is

214



Aust. J. Basic & Appl. Sci., 5(4): 207-222, 2011

a small value. For the control weighting function in equation (23), the value of k was selected to be 2 for
getting a second order function.

4.2 H4  Controller Design:
The H4  controller was designed so that H4  norm from input W =Fd = dist  to  output               is 

p

u

e
Z

e

 
  
 

minimized. Where dist is the input disturbance signal, ep , eu are the weighted error and control signals. Figure
7 shows the standard feedback diagram of the system with weights. The generalized plant P is expressed by:

(24) 0

p d p dT

u u

d p

W G W Ge
dist

e W
u

e G G

  
                

where u is the control signal.

Fig. 6: Open loop frequency response characteristics with parameters uncertainty.

Fig. 7: The standard feedback diagram of the system with weights.
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The lower linear fractional transformation of the generalized plant P and controller K4 can be described
by:

 (25)1( , )
p d

u d

W G S
F P K

W G K S




 
  
 

where S= (1+GpK4)
-1 is the sensitivity function of the nominal plant.

The objective  of H4  control  is to find the controller K4 that internally stabilizes the system such that

            is minimized (Zhou and Doyle, 1998).zwT


where            is the transfer function of the system from input W to output Z and can be expressed as:zwT


 (26)
p d

zw

u d

W G S
T

W G K S
 

 
  
 

The H4  control minimizes the cost function in (26) using γ -iteration (Skogestad and Postlethwaite, 2005) 

to find the stabilizing controller such that                . So in this paper we have tried to find the optimal zwT 



value of γ by using PSO algorithm for tuning the weighting functions that have a great effect on the overall
design of H4  control technique. The optimal value of γ is the infimum overall γ such that the H4  control
conditions stated in (Zhou and Doyle, 1998) are satisfied.

A suboptimal H4  controller was obtained using the following Matlab command:

 (27)max[ , , ] inf ( , , , )zw suboptimal yK T h syn P n tol  

where ny and nu are the dimensions of y and u, γmin and γmax are the lower and upper bound for γoptimal , and tol
is the tolerance to the optimal value.

4.3 Tuning of Weights Using PSO:
The PSO algorithm is used to tune the selected weighting functions to obtain the optimal values of their

parameters that ensure a controlled system with a good disturbance rejection, good transient response and low
control signal. The fitness function used in PSO algorithm is the performance criteria stated in equation (26).
The algorithm obtains the minimum value of the infinity norm of the performance criteria. The velocity and
position equations of PSO algorithm are (Sheng-Fu et al, 2007):

(28)
1

1 2

1 1

( ) ( )k k b k g k
i i i i i i

k k k
i i i

v w v c rand x x c rand x x

x x v



 

         

  (29)

where     is  the particle  velocity,       is  the  current  particle  position, w is the inertia weight and it is 
k
iv k

ix

selected to be 1.5,       and       are the best value and the global best value, rand is a random function, c1 
b
ix g

ix

and c2 are learning factors and are selected to be c1 = c2 = 2. The swarm size is (100) with (7-dimensions)
(variables to be optimized) and the number of generations is (100). The proposed PSO algorithm for finding
the optimal values of the weighting functions parameters is described by the flowchart shown in Figure 8. The
overall block diagram of the system with PSO tuning algorithm is shown in Figure 9.
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Fig. 8: Flowchart for tuning the weighting functions using PSO.

Fig. 9: Block diagram of the overall controlled system.

The interval for γ iteration is chosen between 0.1 and 10. The obtained controller is: -

217



Aust. J. Basic & Appl. Sci., 5(4): 207-222, 2011

 (30)

2

3 2 4 5

2.021 68.7 5840

2373 2.753 10 1.393 10

s s
K

s s s

 


    

The optimal weighting functions parameters obtained using PSO algorithm are as follows: - 
β = 60.5724624, α = 0.01, wc = 4.93, ζ1 = 0.38, ζ2 = 8.1242, Mu = 1.0011216, g = 0.0 1 and wbc = 1.7 with
γ = 0. 8559.

6. Simulation Results:
Figure 10  shows  the  singular  values  of  closed  loop  system  with  the  controller  K4. It is seen 

that  the  maximum  value  of  the  closed  loop  system  is  less  than one, that’s mean that the condition 

                               is  satisfied.  Figure  11  shows  the frequency characteristics of the sensitivity 
1(1 ) 1p pW G K 

 
 

function compared with the inverse of the performance weighting function. It is clear that the sensitivity
function lies below the inverse of Wp that is means that the performance criterion was satisfied. Figure 12
shows the frequency response of the open loop perturbed system with the controller. It is clear that the system
is always stable with all parameters uncertainty that is robust stability was satisfied. Figure 13a and b show
the time response characteristics of the closed loop nominal system and perturbed system. The time response
characteristic of the system subjected to disturbance is shown in Figure 14. For a practical requirements, it is
required the control signal to be small to avoid the problem of the saturation.

Figure 15 shows the frequency characteristics of the control signal where a small maximum value was
obtained.

Fig. 10: The largest singular Value of the closed loop controlled system TZW .

Conclusion: 
A robust H4  controller has been designed to assure robust stability and robust performance of a pneumatic

servo actuator system with parametric uncertainty. The particle swarm optimization method (PSO) was used
for tuning the weighting functions. The optimal parameters of the weighting functions that are obtained using
PSO algorithm led to obtain a robust controller that achieves the position control of pneumatic actuator. It was
also shown that the proposed method for tuning the weighting functions is easy to implement and better results
could be obtained using this method. Finally a simple and low order robust controller was obtained.
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Fig. 11: Frequency characteristics of sensitivity function S (solid line) and the inverse of the weighting function
Wp (dashed line).

Fig. 12: Frequency response characteristics of perturbed controlled system.
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(A)

(B)

Fig. 13: Closed loop time response characteristics of the closed loop controlled system a) nominal system b)
perturbed system.
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Fig. 14: Time response characteristics of the closed Loop controlled system subjected to disturbance.

Fig. 15: Frequency response characteristics of the control signal.
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