Structural Investigation of Novel Heterocyclic 1,3-oxazepine by 2DNMR

AbdulKarim-Talaq Mohammad, Hasnah Osman, Guan-Yeow Yeap
School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia

Abstract

The complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of three series novel heterocyclic 1,3-oxazepinediones analogues were achieved using two dimensional experiments (COSY, NOESY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC and HMBC spectra).

Key words: 2DNMR, 1,3-oxazepinediones, COSY, NOESY, HMQC, HMBC.

INTRODUCTION

[1,3]oxazepine-diones is a seven-membered ring containing nitrogen, oxygen and two carbonyl group. Many researchers have investigated the molecular properties of the $1,4-, 4,1$-, and 1,5 -benzoxazepines they constitute an important class of heterocyclic compounds which have many biological uses (Aiello et al, 2004; Audouze et al, 2004; Dols et al, 2008; Franzen et al, 2000; Ichikawa et al, 1995; Kaneko et al, 2002; Liao et al, 1999; Ott et al, 2004; Serrano et al, 2002 and Smith et al, 2006). A considerable number of methods towards the formation of oxazepine ring have been reported in recent years (Bajaja et al, 2004 and Kamal et al 2008). However, convenient and efficient way to form the oxazepine rings is still preferred owing to its importance as pharmaceutical drugs and active substances in biological systems. Our interesting to modification of oxazepine core as liquid-crystalline compounds has been reported in earlier publication (Yeap et al, 2010). The incorporation of the heteroatoms (S, O and N) can result in significant change upon liquid-crystalline phase as the atoms thus introduced are claimed to be more polarizable than carbon (Grunanger 1991; Cristiano et al; 2005; Merio et al 2000; Demus et al, 1998; Haino 2004 and Zuniga et al, 2001).

Experimental:

The experimental part for the synthesized of three series of 1,3-oxazepin-diones and recording of all proton and carbon NMR have been reported elsewhere (Yeap et al, accepted). The types of compounds were shown in (Scheme 1). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in DMSO (for $\mathbf{1 a} \mathbf{- 7 b}, \mathbf{1 b} \mathbf{- 7 b}$ and 1c-7c) at 298 K on a Bruker 400 MHz Ultrashied ${ }^{\mathrm{TM}}$ FT-NMR spectrometer equipped with a 5 mm BBI inverse gradient probe. Chemicals shift were referenced to internal TMS. The concentration of solute molecules was 50 mg in 1.0 ml DMSO. Standard Bruker pulse programs (Bruker program) were used throughout the entire experiment. The spectroscopic details of NMR are summarized in Table 1.

RESULTS AND DISCUSSION

The data of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts for title compounds in DMSO solution are listed in respective Tables $2 \mathrm{a}, 2 \mathrm{~b}$ and 4 . A complete assignment for the title compounds can be described by based on respective compounds shown in scheme $\mathbf{1}$ in which three types of compounds have been differentiated by \mathbf{a}, \mathbf{b} and \mathbf{c}.

The complete ${ }^{1} \mathrm{H}$ assignment of molecules of title compounds were achieved by means of proton-proton correlation methods COSY and NOESY Table 3. The COSY experiments confirm the ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ coupling interaction in molecules. From 2D COSY spectra of title compounds all the connections between the hydrogen atoms are clearly observed. The correlations between the doublet at $\delta=6.21-6.26 \mathrm{ppm}$ which assigned to H 9 in heterocyclic ring of compounds 1a-7a correlated with the proton H 10 in the same ring which can be observed as doublet at $\delta=6.39-6.41 \mathrm{ppm}$. The 2D COSY spectra of compounds $\mathbf{1 b} \mathbf{- 7 b}$ enabled us to assign the proton triplet at $\delta=2.25-2.28 \mathrm{ppm}$ which could be assigned to H 9 in heterocyclic ring correlated with triplet at $\delta=2.40-2.42 \mathrm{ppm}$ for proton H10. The correlation by COSY also reveals that the NMR doublet signal of aromatic protons at $\delta=7.35-7.88 \mathrm{ppm}$ in respective compounds $\mathbf{1 a - 7 a}, \mathbf{1 b} \mathbf{- 7 b}$ and $\mathbf{1 c} \mathbf{- 7} \mathbf{c}$, have been

[^0]correlated with NMR doublet signal of aromatic ring protons at $\delta=7.10-7.43 \mathrm{ppm}$. Moreover, the aromatic ring protons adjacent with heterocyclic ring of respective compounds $\mathbf{1 c} \mathbf{c} \mathbf{7 c}$ have been confirmed by the correlation between the doublet at $\delta=7.84-7.88 \mathrm{ppm}$ which has been assigned to aromatic proton H 12 with the triplet at $\delta=7.50-7.53 \mathrm{ppm}$ for aromatic ring proton H13. Similarly, the correlation between the triplet for aromatic proton H 14 at $\delta=7.47-7.49 \mathrm{ppm}$ with the doublet at $\delta=7.73-7.75 \mathrm{ppm}$ was observed. This can be attributed to aromatic proton H15. In the same way, at lowerfield we can assign the proton triplet at $\delta=4.03-4.09 \mathrm{ppm}$ $\mathrm{O}-\mathrm{CH}_{2}$ of the ether linking groups which found to be correlated with the signal assigned in the region $\delta=$ $1.70-1.76 \mathrm{ppm}$ for $\left(\mathrm{O}-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)\right)$. The triplet at $\delta=3.00-3.17 \mathrm{ppm}$ attributed to $\mathrm{N}-\mathrm{CH}_{2}$ has found to be correlated with signal at $\delta=1.70-1.76 \mathrm{ppm}$. The COSY spectrum of compound $7 \mathbf{a}$ was shown in Fig 1 .

1b-7b

$1 \mathrm{c}-7 \mathrm{c}$
$\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{C}_{8} \mathrm{H}_{17}, \mathrm{C}_{10} \mathrm{H}_{21}, \mathrm{C}_{12} \mathrm{H}_{25}, \mathrm{C}_{14} \mathrm{H}_{29}, \mathrm{C}_{16} \mathrm{H}_{33}, \mathrm{C}_{18} \mathrm{H}_{37}$

Scheme 1: Structures of the three types of heterocyclic 1,3-oxazepindiones

Fig. 1: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ connectiveities in the COSY spectra for compound $7 \mathbf{7}$.
The NOESY spectra of all investigated compounds allow us to assign the correlation between the aromatic ring protons at $\delta=7.09-7.43 \mathrm{ppm}$ with the proton triplet at $\delta=4.03-4.09 \mathrm{ppm}$ which can be assigned for proton $\mathrm{C}_{4}-\mathrm{OCH}_{2}$ and with doublet at $\delta=7.35-7.88 \mathrm{ppm}$ which can be assigned for aromatic protons H 2 or (H6). In the same experiment we can observed the correlation between the triplets at $\delta=3.00-3.17 \mathrm{ppm}$ and $\delta=4.03-4.09 \mathrm{ppm}$ with multiplets at $\delta=1.21-1.76 \mathrm{ppm}$. The triplet proton at $\delta=0.85-0.88 \mathrm{ppm}$ was also correlated with the same multiplet. The NOESY spectra of compounds 1a-7a showed a clear correlation between the proton doublet of heterocyclic ring at $\delta=6.21-6.26 \mathrm{ppm}$ with proton doublet at $\delta=6.39-6.41 \mathrm{ppm}$
in the same ring. On the other hand, the NOESY spectra of compounds $\mathbf{1 b} \mathbf{- 7 b}$ assigned the correlation between the proton triplet at $\delta=2.25-2.28 \mathrm{ppm}$ with the proton triplet at $\delta=2.40-2.42 \mathrm{ppm}$. Moreover, the NOESY spectra enabled us to assign the protons of aromatic ring adjacent to heterocyclic ring in compounds 1c-7c. Through this technique we can observe the correlation between the doublet at $\delta=7.84-7.88 \mathrm{ppm}$ with the two triplets at $\delta=7.50-7.53 \mathrm{ppm}$ and $\delta=7.47-7.49 \mathrm{ppm}$. These protons can be assigned for protons H12, H13 and H14, respectively. A doublet which located in the same aromatic ring in the region of about $\delta=7.73-7.75$ ppm have been correlated with the respective protons H 13 and H 15 . Select relationship for compound 7a in the COSY and NOESY spectrums shown in Fig 2.

The structures of the title compounds are further substantiated by the ${ }^{13} \mathrm{C}$ NMR and DEPT135 data (Table 4).

Table 1: Acquisition parameter used in the NMR measurements

Parameters	Experiment					
	${ }^{1} \mathrm{H}$ NMR	${ }^{13} \mathrm{C}$ NMR	2D CosY	2D NOESY	2D HMQC	2D HMBC
SF	400.1 MHz	100.6 MHz	400.1 MHz	400.1 MHz	$\begin{aligned} & F_{1}=100.6 \mathrm{MHz} \\ & F_{2}=400.1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \hline F_{1}=100.61 \mathrm{MHz} \\ & F_{2}=400.1 \mathrm{MHz} \end{aligned}$
SW	10ppm	180 ppm	10 ppm	10 ppm	$\begin{aligned} & F_{1}=180 \mathrm{ppm} \\ & F_{2}=10 \mathrm{ppm} \end{aligned}$	$\begin{aligned} & F_{1}=180 \mathrm{ppm} \\ & F_{2}=10 \mathrm{ppm} \end{aligned}$
PW	$\begin{aligned} & 8.3 \mu \mathrm{~s} \\ & \left(30^{\circ} \text { flip angle }\right) \end{aligned}$	$\begin{aligned} & 20.0 \mu \mathrm{~s} \\ & \left(90^{\circ} \mathrm{flip} \text { angle }\right) \end{aligned}$	$8.3 \mu \mathrm{~s}$ (90° flip angle)	$8.3 \mu \mathrm{~s}$ (90° flip angle)	$8.3 \mu \mathrm{~s}$ $\left(90^{\circ}\right.$ flip angle)	$8.3 \mu \mathrm{~s}$ (90^{0} flip angle)
AQ	4.0 s	1.3 s	0.3 s	0.3 s	0.09 s	0.4 s
D1	1.0 s	2.0 s	2.0 s	2.0 s	1.0 s	1.0 s
NS	16	20000	16	32	88	92
TD	66 k	66 k	$\begin{aligned} & F_{1}=256 \\ & F_{2}=2048 \\ & \hline \end{aligned}$	$\begin{aligned} & F_{1}=256 \\ & F_{2}=2048 \\ & \hline \end{aligned}$	$\begin{aligned} & F_{1}=512 \\ & F_{2}=1024 \\ & \hline \end{aligned}$	$\begin{aligned} & F_{1}=512 \\ & F_{2}=4096 \\ & \hline \end{aligned}$

- Abbreviations: F_{1}, ${ }^{13} \mathrm{C}$ Channel (except 2D COSY where F_{1} and F_{2} are ${ }^{1} \mathrm{H}$ channel); SF. spectrometer frequency; SW, spectral width; AQ , acquisition time; DI, relaxation delay; NS, number ; TD, number of data point .

Table 2(a): ${ }^{1} \mathrm{H}$ NMR chemical shift (ppm) of compounds 1a-7a and 1b-7b.

Compounds	n	H2 and H6	H3 and H5	H7	H9	H10	$\mathrm{C}_{4}-\mathrm{OCH}_{2}$	$\mathrm{N}-\mathrm{CH}_{2}$	$\begin{aligned} & \mathrm{OCH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\left(\mathrm{CH}_{2}\right)_{13}{ }^{*} \\ & \mathrm{NCH}_{2}-\left(\mathrm{CH}_{2}-\mathrm{CH}_{n}\right)^{+} \\ & \hline \end{aligned}$	CH_{3}
1a	3	7.83 (d, J=8.12 Hz)	7.11 (d, J=8.36 Hz)	9.85 s	6.22 (d, J=12.48 Hz)	6.41 (d, J=12.60 Hz)	4.05 t	3.15 t	$1.75-1.24 \mathrm{~m}$	0.87 t
2a	5	7.82 (d, J=8.17 Hz)	7.10 (d, J=8.34 Hz)	9.85 s	6.23 (d, J=12.51 Hz)	6.40 (d, J=12.56 Hz)	4.04 t	3.15 t	$1.74-1.23 \mathrm{~m}$	0.86 t
3a	7	7.85 (d, J=8.20 Hz)	7.12 (d, J=8.39 Hz)	9.87 s	6.26 (d, J=12.55 Hz)	6.40 (d, J=12.54 Hz)	4.06 t	3.16 t	$1.76-1.23 \mathrm{~m}$	0.86 t
4a	9	7.82 (d, J=8.15 Hz)	7.11 (d, J=8.34 Hz)	9.85 s	6.21 (d, J=12.42 Hz)	6.42 (d, J=12.59 Hz)	4.03 t	3.14 t	$1.75-1.22 \mathrm{~m}$	0.85 t
5a	11	7.81 (d, J=8.14 Hz)	7.12 (d, J=8.40 Hz)	9.84 s	6.20 (d, J=12.39 Hz)	6.39 (d, J=12.50 Hz)	4.04 t	3.15 t	$1.73-1.22 \mathrm{~m}$	0.86 t
6a	13	7.80 (d, J=8.11 Hz)	7.10 (d, J=8.36 Hz)	9.85 s	6.23 (d, J=12.48 Hz)	6.40 (d, J=12.52 Hz)	4.05 t	3.15 t	$1.72-1.22 \mathrm{~m}$	0.85 t
7 a	15	7.85 (d, J=8.18 Hz)	7.43 (d, J=8.55 Hz)	9.85 s	6.24 (d, J=12.52 Hz)	6.41 (d, J=12.57 Hz)	4.05 t	3.16 t	$1.71-1.21 \mathrm{~m}$	0.85 t
1b	3	7.86 (d, J=8.64 Hz)	7.12 (d, J=8.69 Hz)	9.85 s	2.27 (t, J=7.09 Hz)	2.41 (t, J=7.18 Hz)	4.06 t	3.01 t	$1.70-1.21 \mathrm{~m}$	0.86 t
2b	5	7.87 (d, J=8.66 Hz)	7.13 (d, J=8.69 Hz)	9.86 s	2.27 (t, J=7.09 Hz)	2.40 (t, J=7.16 Hz)	4.07 t	3.01 t	$1.71-1.22 \mathrm{~m}$	0.87 t
3b	7	7.86 (d, J=8.64 Hz)	7.11 (d, J=8.68 Hz)	9.86 s	2.28 (t, J=7.08 Hz)	2.40 (t, J=7.16 Hz)	4.07 t	3.02 t	$1.71-1.23 \mathrm{~m}$	0.86 t
4b	9	7.88 (d, J=8.65 Hz)	7.12 (d, J=8.69 Hz)	9.85 s	2.27 (t, J=7.07 Hz)	2.41 (t, J=7.17 Hz)	4.06 t	3.01 t	$1.72-1.22 \mathrm{~m}$	0.86 t
5b	11	7.85 (d, J=8.64 Hz)	7.10 (d, J=8.66 Hz)	9.84 s	2.26 (t, J=7.07 Hz)	2.42 (t, J=7.19 Hz)	4.06 t	3.02 t	$1.71-1.22 \mathrm{~m}$	0.86 t
6b	13	7.86 (d, J=8.64 Hz)	7.11 (d, J=8.68 Hz)	9.85 s	2.25 (t, J=7.06 Hz)	2.41 (t, J=7.17 Hz)	4.05 t	3.00 t	$1.72-1.23 \mathrm{~m}$	0.86 t
7 b	15	7.88 (d, J=8.66 Hz)	7.13 (d, J=8.69 Hz)	9.86 s	2.26 (t, J=7.07 Hz)	$2.41(\mathrm{t}, \mathrm{J}=7.16 \mathrm{~Hz}$)	4.06 t	3.01 t	$1.71-1.22 \mathrm{~m}$	0.85 t

$\frac{7 \mathrm{~b}}{* \mathrm{OCH}_{2}-\left(\left(\mathrm{CH}_{2}\right)_{2}-\left(\mathrm{CH}_{2}\right)_{13}\right)=\text { the number of carbon atom in ether chain. }}$
${ }^{+} \mathrm{NCH}_{2}-\left(\mathrm{CH}_{2}-\mathrm{CH}_{\mathrm{n}}\right)=$ the number of carbon atom in aliphatic chain which adjacent with (N) in heterocyclic ring.
Table 2(b): ${ }^{1} \mathrm{H}$ NMR chemical shift (ppm) of compounds $\mathbf{1 c}$ - $\mathbf{7 c}$

Compounds		H2 and H6	H3 and H5	H7	H12	H13	H14	H15	$\mathrm{C}_{4}-\mathrm{OCH}_{2}$	$\mathrm{N}-\mathrm{CH}_{2}$	$\begin{aligned} & \mathrm{OCH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\left(\mathrm{CH}_{2}\right)_{13}{ }^{*} \\ & \mathrm{NCH}_{2}-\left(\mathrm{CH}_{2}-\mathrm{CH}_{n}\right)^{+} \\ & \hline \end{aligned}$	CH_{3}
1c	3	7.35 (d, J=8.35 Hz)	$\begin{aligned} & 7.09 \\ & (\mathrm{~d}, \mathrm{~J}=8.21 \mathrm{~Hz}) \end{aligned}$	9.84 s	7.84 (d, J=7.58 Hz)	$\begin{aligned} & 7.51 \\ & (\mathrm{t}, \mathrm{~J}=7.25 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.47 \\ & (\mathrm{t}, \mathrm{~J}=7.46 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.74 \\ & (\mathrm{~d}, \mathrm{~J}=7.71 \mathrm{~Hz}) \end{aligned}$	4.06 t	3.14 t	$1.74-1.22 \mathrm{~m}$	0.85 t
2c	5	7.36 (d, J=8.38 Hz)	7.10 (d, J=8.20 Hz)	9.85 s	7.85 (d, J=7.58 Hz)	$\begin{aligned} & 7.50 \\ & (\mathrm{t}, \mathrm{~J}=7.24 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.48 \\ & (\mathrm{t}, \mathrm{~J}=7.46 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.74 \\ & (\mathrm{~d}, \mathrm{~J}=7.71 \mathrm{~Hz}) \end{aligned}$	4.06 t	3.15 t	$1.74-1.21 \mathrm{~m}$	0.86 t
3 c	7	$\begin{aligned} & 7.39 \\ & (\mathrm{~d}, \mathrm{~J}=8.39 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.11 \\ & (\mathrm{~d}, \mathrm{~J}=8.21 \mathrm{~Hz}) \end{aligned}$	9.86 s	$\begin{aligned} & 7.86 \\ & (\mathrm{~d}, \mathrm{~J}=7.60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.52 \\ & (\mathrm{t}, \mathrm{~J}=7.25 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.49 \\ & (\mathrm{t}, \mathrm{~J}=7.44 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.75 \\ & (\mathrm{~d}, \mathrm{~J}=7.74 \mathrm{~Hz}) \end{aligned}$	4.07 t	3.15 t	$1.73-1.23 \mathrm{~m}$	0.85 t
4 c	9	$\begin{aligned} & 7.39 \\ & (\mathrm{~d}, \mathrm{~J}=8.39 \mathrm{~Hz}) \end{aligned}$	7.11 (d, J=8.21 Hz)	9.85 s	7.85 (d, J=7.59 Hz)	$\begin{aligned} & 7.52 \\ & (\mathrm{t}, \mathrm{~J}=7.25 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.48 \\ & (\mathrm{t}, \mathrm{~J}=7.46 \mathrm{~Hz}) \end{aligned}$	7.74 (d, J=7.71 Hz)	4.08 t	3.15 t	$1.72-1.22 \mathrm{~m}$	0.87 t
5c		$\begin{gathered} 7.40 \\ \mathrm{~J}=8.48 \mathrm{~Hz}) \end{gathered}$	7.14 (d, J=8.23 Hz)	9.86 s	$\begin{aligned} & 7.88 \\ & (\mathrm{~d}, \mathrm{~J}=7.60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.52 \\ & (\mathrm{t}, \mathrm{~J}=7.25 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.49 \\ & (\mathrm{t}, \mathrm{~J}=7.44 \mathrm{~Hz}) \end{aligned}$	7.74 (d, J=7.71 Hz)	4.09 t	3.17 t	$1.74-1.23 \mathrm{~m}$	0.88 t
6 c		$\begin{gathered} 7.38 \\ \mathrm{~J}=8.39 \mathrm{~Hz} \text {) } \end{gathered}$	7.11 (d, J=8.20 Hz)	9.86 s	$\begin{aligned} & 7.86 \\ & (\mathrm{~d}, \mathrm{~J}=7.61 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.53 \\ & (\mathrm{t}, \mathrm{~J}=7.26 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.48 \\ & (\mathrm{t}, \mathrm{~J}=7.46 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.73 \\ & (\mathrm{~d}, \mathrm{~J}=7.70 \mathrm{~Hz}) \end{aligned}$	4.08 t	3.16 t	1.73-1.23 m	0.86 t
7 c		$\begin{gathered} 7.40 \\ \mathrm{~J}=8.39 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{aligned} & 7.15 \\ & (\mathrm{~d}, \mathrm{~J}=8.22 \mathrm{~Hz}) \end{aligned}$	9.85 s	$\begin{aligned} & 7.87 \\ & (\mathrm{~d}, \mathrm{~J}=7.59 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.50 \\ & (\mathrm{t}, \mathrm{~J}=7.22 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.49 \\ & (\mathrm{t}, \mathrm{~J}=7.44 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.75 \\ & (\mathrm{~d}, \mathrm{~J}=7.74 \mathrm{~Hz}) \end{aligned}$	4.08 t	3.16 t	$1.73-1.24 \mathrm{~m}$	0.87 t

Table 3: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ correlation from 2D COSY and NOESY for $\mathbf{1 a}-\mathbf{7 a}, \mathbf{1 b}-\mathbf{7 b}$ and $\mathbf{1 c} \mathbf{- 7} \mathbf{c}$

Compounds	Atom H	COSY	NOESY
1a-7a	H 2 or H6	H 3 or H5	H 3 or H 5
	H 3 or H5	H 2 or H5	H 2 or $\mathrm{H} 6, \mathrm{O}-\mathrm{CH}_{2}$
	H 9	H 10	H 10
	H 10	H 9	H 9
	$\mathrm{O}-\mathrm{CH}_{2}$	$\mathrm{O}-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)$	$\mathrm{O}-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right), \mathrm{H} 3$ or H 5
	$\mathrm{~N}-\mathrm{CH}_{2}$	$\mathrm{~N}-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)$	$\mathrm{N}-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)$

Table 3: Continue

Fig. 2: Select relationship for compound 7a in the COSY and NOESY spectrum.
All aromatic and aliphatic carbons were identified by HMQC and HMBC Table 5. The HMQC experiment provides information regarding the interaction between the protons and the carbon atoms to which they are directly attached. In the present compounds $\mathbf{1 a - 7 a}, \mathbf{1 b} \mathbf{- 7 b}$ and $\mathbf{1 c} \mathbf{c} \mathbf{7 c}$ the carbon signals observed at $\delta=125.44-132.77 \mathrm{ppm}, \delta=115.00-116.09 \mathrm{ppm}$ have correlation with respective aromatic protons at $\delta=7.35$ 7.88 ppm and $\delta=7.10-7.43 \mathrm{ppm}$. Furthermore, the carbon signal located at the region $\delta=89.97-90.12 \mathrm{ppm}$ in the spectra was correlated with the proton resonances at $\delta=9.84-9.87 \mathrm{ppm}$ which observed to H 7 in heterocyclic ring. The HMQC spectra of compounds 1a-7a showed the correlation of proton signals at $\delta=$ 6.21-6.26 ppm and $\delta=6.39-6.41 \mathrm{ppm}$ with respective carbon signals at $\delta=132.62-132.66 \mathrm{ppm}$ and $\delta=$ $130.87-130.90 \mathrm{ppm}$, which led to the assignment of these signals to the C 9 and C 10 in heterocyclic ring. Similarly, the proton signals at $\delta=2.25-2.28 \mathrm{ppm}$ and $\delta=2.40-2.42 \mathrm{ppm}$ in respective, compounds $\mathbf{1 b} \mathbf{- 7 b}$ were observed the correlation with carbon signals at $\delta=29.31-29.34 \mathrm{ppm}$ and $\delta=27.80-27.82 \mathrm{ppm}$. In the same way the carbon signals in compounds $1 \mathrm{c}-7 \mathrm{c}$ at $\delta=129.97-129.99 \mathrm{ppm}, \delta=128.40-128.45 \mathrm{ppm}, \delta=$ 135.22-135.24 ppm and $\delta=122.32-123.37 \mathrm{ppm}$ showed correlation with respective proton chemical shift at
$\delta=7.84 .7 .88 \mathrm{ppm}, \delta=7.50-7.53 \mathrm{ppm}, \delta=7.47-7.49 \mathrm{ppm}$ and $\delta=7.73-7.75 \mathrm{ppm}$. The HMQC of title compounds were able to assign the proton triplet at $\delta=4.03-4.09 \mathrm{ppm}$ which correlated with the carbon signal at $\delta=68.03-68.92 \mathrm{ppm}$, also revealed the correlation between carbon signal at $\delta=39.03-39.74 \mathrm{ppm}$ with chemical shift at $\delta=3.00-3.17 \mathrm{ppm}$.

Table 5: $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC and HMBC correlation for $\mathbf{1 a}-7 \mathbf{a}, \mathbf{1 b}-\mathbf{7 b}$ and $\mathbf{1 c} \mathbf{- 7} \mathbf{c}$

Compounds	Atom	HMQC		HMBC [J(C,H)]	
		${ }^{1} \mathrm{~J}$	${ }^{2} \mathrm{~J}$	${ }^{3} \mathrm{~J}$	${ }^{4} \mathrm{~J}$
1a-7a	H2 or H6	C2 or C6	C1, C3orC5	C4, C7	-
	H3 or H5	C3 or C5	C2orC6, C4	-	-
	H7	C7	C1	C2orC6	-
	H9	C9	C8, C10	C11	-
	H10	C10	C9, C11	C8	-
	$\mathrm{O}-\mathrm{CH}_{2}$	O-C	OC1-(C2)	OC1-C2-(C3), C 4	OC1-C2-C3(C4)
	$\mathrm{N}-\mathrm{CH}_{2}$	N-C	NC-(Cn)	NC-(Cn), C11	NC-(Cn)
1b-7b	H2 or H6	C 2 or C6	C1, C3orC5	C4, C7	-
	H3 or H5	C3 or C5	C2orC6, C4	-	
	H7	C7	C1	C2orC6	-
	H9	C9	C8, C10	C11	-
	H10	C10	C9, C11	C8	-
	$\mathrm{O}-\mathrm{CH}_{2}$	O-C	OC1-(C2)	OC1-C2-(C3), C 4	OC1-C2-C3(C4)
	$\mathrm{N}-\mathrm{CH}_{2}$	N-C	N-C	NC-(Cn)	NC-(Cn), C11
1c-7c	H2 or H6	C2 or C6	C1, C3orC5	C4	-
	H3 or H5	C3 or C5	C2orC6, C4	-	-
	H7	C7	C1	C2orC6	C15
	H12	C12	C13	C8	C15
	H13	C13	C12	C15	C8
	H14	C14	C15	C12	C11
	H15	C15	C14	C11	-
	$\mathrm{O}-\mathrm{CH}_{2}$	O-C	OC1-(C2)	OC1-C2-(C3), C 4	OC1-C2-C3(C4)
	$\mathrm{N}-\mathrm{CH}_{2}$	N-C	N-C	NC-(Cn)	NC-(Cn), C11

The assignment for the carbon nuclei can also be supported by long range connectivities. The HMBC spectra of title compounds help to observe the correlation of aromatic quaternary carbon and its neighboring proton. In addition the HMBC experiment allowed us to assign the aromatic non-protonated and protonated carbons. The spectra of compounds $\mathbf{1 a - 7 a}$ and $\mathbf{1 b} \mathbf{- 7 b}$ showed that the doublet at $\delta=7.80-7.85 \mathrm{ppm}$ and $\delta=$ $7.85-7.88 \mathrm{ppm}$ which has been assigned to the aromatic proton H 2 or (H6) was correlated with C 1 and C 3 or (C5) which located at the respective ${ }^{13} \mathrm{C}$ NMR signal $\delta=130.00-130.36 \mathrm{ppm}$ and $\delta=115.70-116.09 \mathrm{ppm}$ through the long-range cross peak ${ }^{2} \mathrm{~J}$ also with the carbon signal at $\delta=164.32-164.61 \mathrm{ppm}$ and $\delta=90.00-$ 90.12 ppm through the long-range cross peak ${ }^{3} \mathrm{~J}$. In addition, the protons doublet located at the region $\delta=$ 7.10-7.43 ppm and $\delta=7.10-7.13 \mathrm{ppm}$ in the respective spectra of compounds $\mathbf{1 a - 7 a}$ and $\mathbf{1 b} \mathbf{- 7 b}$, was correlated with the carbon signal at $\delta=132.55-132.77 \mathrm{ppm}$ and $\delta=164.32-164.61 \mathrm{ppm}$ through the long-range cross peak ${ }^{2} \mathrm{~J}$. Moreover, the emergence of the cross peaks associated with the correlation of proton doublets at $\delta=6.21-6.26 \mathrm{ppm}$ and $\delta=6.39-6.41 \mathrm{ppm}$ assigned to respective protons H 9 and H 10 in compounds 1a7a with respective carbon signals at $\delta=166.04-166.10 \mathrm{ppm}, \delta=130.87-130.90 \mathrm{ppm}$ and $\delta=132.62-132.66$ ppm, $\delta=166.22-166.29$ through the long-range cross peak ${ }^{2} \mathrm{~J}$, and with carbon signal at $\delta=166.22-166.29$ ppm and $\delta=166.04-166.10 \mathrm{ppm}$ as ${ }^{3} \mathrm{~J}$ has confirmed that these carbon nuclei ($\mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10$ and C 11) from heterocyclic ring. The proton triplets H 9 and H 10 in compounds $\mathbf{1 b}-\mathbf{7 b}$, located at the chemical shift $\delta=2.25$ 2.28 ppm and $\delta=2.40-2.42$, respectively, was correlated through the long-range cross peak ${ }^{2} \mathrm{~J}$ with respective carbons at $\delta=171.11-171.13 \mathrm{ppm}, \delta=27.80-27.82 \mathrm{ppm}$ and $\delta=29.31-29.34 \mathrm{ppm}, \delta=174.50-174.52 \mathrm{ppm}$ also with ${ }^{3} \mathrm{~J}$ with carbons at $\delta=174.50-174.52 \mathrm{ppm}$ and $\delta=171.11-171.13 \mathrm{ppm}$, respectively. This information suggests that these carbon nuclei (C8, C9, C10 and C11) from heterocyclic ring. In addition, the proton singlet H 7 at $\delta=9.84-9.87 \mathrm{ppm}$ in both series of compounds $\mathbf{1 a} \mathbf{- 7 a}$ and $\mathbf{1 b}-\mathbf{7 b}$, was correlated through ${ }^{2} \mathrm{~J}$ and ${ }^{3} \mathrm{~J}$ with C 1 and C 2 or (C6), respectively, which is located at the chemical shifts $\delta=130.00-130.36 \mathrm{ppm}$ and $\delta=$ 132.55-132.77 ppm. The HMBC of compound 1a-7a showed that doublet of aromatic protons H2 or (H6) at the chemical shifts $\delta=7.35-7.40 \mathrm{ppm}$ was correlated with through the ${ }^{2} \mathrm{~J}$ with the carbons C 1 and C 3 or (C5) which assigned at the chemical shifts $\delta=139.64-139.66 \mathrm{ppm}$ and $\delta=115.00-115.08 \mathrm{ppm}$, respectively, and through the ${ }^{3} \mathrm{~J}$ with C 4 at $\delta=163.11-163.22 \mathrm{ppm}$. While the doublet at $\delta=7.09-7.15 \mathrm{ppm}$ attributed to aromatic protons H 3 or (H5) was correlated through ${ }^{2} \mathrm{~J}$ with the carbons at $\delta=125.44-125.46 \mathrm{ppm}$ and $\delta=$ 163.11-163.22 ppm. The chemical shift of proton $\mathrm{H} 7 \delta=9.84-9.86 \mathrm{ppm}$ was correlated through ${ }^{2} \mathrm{~J},{ }^{3} \mathrm{~J}$ and ${ }^{4} \mathrm{~J}$ with carbons at $\delta=139.64-139.66 \mathrm{ppm}, \delta=125.44-125.46 \mathrm{ppm}$ and $\delta=122.32-123.37 \mathrm{ppm}$. The HMBC
spectra of compound $5 \mathbf{c}$ was shown in Fig 3. While the Select intramolecular interaction Long range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation HMBC was shown in Fig. 4.

Fig. 3: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ connectiveities in the HMBC spectra for compound $\mathbf{5 c}$.

Fig. 4: Select intramolecular interaction Long range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation HMBC connectiveities in spectra for compound 5c.

ACKNOWLEDGEMENT

Authors thank the Universiti Sains Malaysia and the Malaysian Government for financing this project through RU Grant No 1001/PKIMIA/811016 and USM-RU-PRGS Grant No 1001/PKIMIA/842022. One of authors (A. T, Mohammad) thanks the college of science university of Anbar/Iraq for study leave.

REFERENCES

Aiello, F., A. Brizzi, A. Garofalo, F. Grande, G. Ragno, R. Dayam, N. Neamati, 2004. Bio. Med. Chem., 12: 4459.

Audouze, K., E.Q. Nielsen, D. Peters, 2004. J. Med. Chem., 47: 3089.
Bajaja, K., Archana, A. Kumar, 2004. Eur. J. Med. Chem., 39: 369.
Bruker program 1D WIN-NMR (release 6.0) and 2D WIN-NMR (release 6.0).
Cristiano, R., D. Santos, H. Gallardo, 2005. Liq. Cryst., 32: 7.
Demus, D., J.W. Goodby, G.W. Gray, H.W. Spiess, L. Vill, 1998. In Handbook of Liq. Cryst; Wiley VCH: Weinheim., pp: 2.

Dols, P.P.M.A., B.J.B. Folmer, H., Kuil, C.W. Hamersma, H. Lucas, L. Ollero, J.B.M. Rewinkel and P. H.H. Hermkens, 2008. Bioorganic. Med. Chem.Lett., 18: 1461.

Franzen, R.G., 2000. J. Combin. Chem., 2: 195.
Grunanger, P., P. Finzi, In Isoxazoles in the chemistry of Heterocyclic compounds; 1991. Taylor, E. C. Ed.; WileyInterscience: NewYork.

Haino, T., 2004. Tetrahedron Lett., 45: 2277.
Ichikawa, M., Y. Igarashi, Y. Ichikawa, 1995. Tetrahedron Lett., 36: 1767.
Kamal, A., V. Tekumalla, P. Raju, V.G.M. Naidu, P.V. Diwan, R. Sistla, 2008. Bioorganic. Med. Chem. Lett., 18: 3769.

Kaneko, S., M. Arai, T. Uchida, T. Harasaki, T. Fukuoka, T. Konosu, 2002. Bio. Med. Chem. Lett., 12: 1705.

Liao, Y., B.J. Venhuis, N. Rodenhuis, W. Timmerman, H. Wikstrom, 1999. J. Med. Chem., 42: 2235.
Merio, A.A., J.E. Braun, U.B. Vasconcelos, F. Ely, H. Gallardo, 2000. Liq. Cryst., 27: 657.
Ott, I., B. Kircher, G. Heinisch, B. J. Matuszczak, 2004. Med. Chem., 47: 4627.
Serrano, M.H., D.R.S. Laurent, C.E. Mazzucco, T.M. Stickle, J.F. Barrett, D.M. Vyas, B.N. Balasubramanian, 2002. Bioorganic. Med. Chem. Lett., 12: 943.

Smith, L., W.C. Wong, A.S. Kiselyov, S.B. Wizemann, Y. Mao, Y. Xu, M.A.J. Duncton, K. Kim, E.L. Piatnitski, J.F. Doody, Y. Wang, R.L. Rosler, D. Milligan, J. Columbus, C. Balagtas, S.P. Lee, A. Konovalov, Y.R. Hadari, 2006. Bioorganic. Med. Chem. Lett., 16: 5102.

Yeap, Y.G., A.T. Mohammad, H. Osman, 2010. J. Mol. Struc., 982: 33.
Yeap, Y.G., A.T. Mohammad, H. Osman, (Accepted) journal Mol. Cryst. Liq. Cryst.
Zuniga, J., C. Gallardo, H. Hidalgo, P. Vergara, J. Hernandez, 2001. Liq. Cryst., 28: 1659.

[^0]: Corresponding Author: Hasnah Osman, School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
 Tel: +604-6533262, Fax: +604-6574854
 E-mail: ohasnah@usm.my

