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Abstract: In this paper, the LU-representation of fuzzy number is considered and based on the LU-
representation of fuzzy volterra integro-differential equation (FVIDE) is discussed. The existence of
solution of FVIDE is brought in details. Then, the solution is found in three cases of FVIDE that is
concluded from the kernel. Finally, the method is illustrated by solving two examples. 
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INTRODUCTION

The fuzzy differential and integral equations are important part of the fuzzy analysis theory and they have
the important value of theory and application in control theory.

Seikkala (1987) has defined the fuzzy derivative which is the generalization of the Hukuhara derivative
in (Puri, M.L., D.A. Ralescu, 1983), the fuzzy integral which is the same as that of Dubois and Prade (1982),
and by means of the extension principle of Zadeh, showed that the fuzzy initial value problem 

0( ) = ( , ( )), (0) =x t f t x t x x

has a unique fuzzy solution when f satisfies the generalized Lipschitz condition which guarantees a unique
solution of the deterministic initial value problem. Kaleva (1990) studied the Cauchy problem of fuzzy
differential equation, characterized those subsets of fuzzy sets in which the peano theorem is valid. Park et al.
(1995) have considered the existence of solution of fuzzy integral equation in Banach space and Subrahmaniam
and Sudarsanam (1994) have proved the existence of solution of fuzzy functional equations.

Rouhparvar et al. (2010) have discussed the existence and uniqueness of solution of the Cauchy reaction-
diffusion equation by Adomian decomposition method and Abbasbandy and Allahviranloo (2006) have applied
Adomian decomposition method for solving fuzzy systems of the socond kind.

Bede et al (2007) have introduced a more general definition of the derivative for fuzzy mappings,
enlarging the class of differentiable. Park and Jeong (1999, 2000) studied existence of solution of fuzzy integral
equations of the form 

 
0

( ) = ( ) ( , , ( )) , 0
t

x t f t f t s x s ds t 
where f and x are fuzzy functions and k is a crisp function on real numbers.
This paper is organized as following:

In Section 2, the basic concept of fuzzy number operation is brought. In Section 3, the main section of
the paper, is discussed. The proposed idea are illustrated by some examples in the Section 4. Finally conclusion
is drawn in Section 5. 

2  Basic Concepts:
There are various definitions for the concept of fuzzy numbers ([3, 4]). 

Definition 2.1: An arbitrary fuzzy  number u in  the parametric form is represented by an ordered pair  of 
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functions             which satisfy the following requirements:( , )u u 
 

•      is a bounded left-continuous non-decreasing function over [0, 1]. u


•       is a bounded left-continuous non-increasing function over [0, 1]. u


•                     . , 0 1u u     

A crisp number r is simply represented by                        . If            ,  we  have  a fuzzy interval = = , 0 1u u r      1 1<u u 

and if             , we have a fuzzy number. In this paper, we do not distinguish between numbers or intervals 1 1=u u 

and for simplicity we refer to fuzzy numbers as interval. We also use the notation                 to denote = [ , ]u u u  
 

the α-cut of arbitrary fuzzy number u. If                and                are two arbitrary fuzzy numbers, the = ( , )u u u 
  = ( , )v v v 

 

arithmetic operations are defined as follows: 

Definition 2.2 (Addition) 

   (1)= ( , )u v u v u v   
     

and in the terms of α-cuts 

  (2)( ) = [ , ], [0,1]u v u v u v           
 
Definition 2.3 (Subtraction) 

   (3)= ( , )u v u v u v   
     

and in the terms of α-cuts 

   (4)( ) = [ , ], [0,1]u v u v u v           
 
Definition 2.4 (Scalar multiplication) For given         k

   (5)
( , ), > 0

=
( , ), < 0

ku ku k
ku

ku ku k
 

 

 

 





and 

   (6)( ) = [min{ , }, max{ , }]ku ku ku ku ku    
   

 
In particular, if k = 1, we have 

 = ( , )u u u 
   

and with α-cuts 

 ( ) = [ , ], [0,1]u u u       

Definition 2.5 (Multiplication) 

   (7)= (( ) , ( ) )uv uv uv 
 
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and 

  (8)
( ) = min{ , , , }

( ) = max{ , , , }, [0,1]

uv u v u v u v u v

uv u v u v u v u v
        

         

        

         
 
Definition 2.6 (Division)

If                 0 00 [ , ]v v 

  (9)= (( ) , ( ) )
u u u

v v v 
 

and 

 (10)

( ) = min{ , , , }

( ) = max{ , , , }, [0,1]

u u u uu

v v v v v

u u u uu

v v v v v

   


   

   


   



   


   

   


    

 
Definition 2.7  (Stefanini, L., 2006). LU-representation  of  an  arbitrary  fuzzy  number u by a vector of 8 

component of the interval [0, 1], with N = 1 (without internal points) and           and         , is as follows: 0 = 0 1 = 1

 (11)0 0 0 0 1 1 1 1= ( , , , , , , , )u u u u u u u u u          

where                     are used for the lower branch      , and                     are  used for the upper 0 0 1 1, , ,u u u u     u


0 0 1 1, , ,u u u u    

branch      , by application of a monotonic interpolator on the whole interval           . u


[0,1] 

In particular, the slops corresponding to       are denoted by       , etc. By definition (2.1), it is clear iu
iu 

that            ,             ,             and           . For an arbitrary trapezoidal fuzzy number u, we have 0 0u   1 0u   0 0u   1 0u  

 0 1 0 1= , =u u u u      

and if           , then u is an triangular fuzzy number.1 1=u u 

As reported in (Stefanini, L., 2006), using LU-representation (11), the membership function        of the( )x
LU-fuzzy number u is obtained by 

(12)( ) = sup{  | [ , ]}x x u u    

In particular, corresponding to the nodes of the α-cuts, we have 

( ) = ( ) = , = 0,1, ,i i iu u i N    

and, in the differentiable case 

' '1 1
( ) = , ( ) = , = 0,1, ,i i

i i

u u i N
u u

 
 

 
  
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The membership function       can be approximated  by  the use of monotonic spline interpolation (see ( )x

(Guerra, M.L., L. Stefanini, 2005)).
In this paper, we will suppose the differentiable case, for which we use the representation 

 (13)=0,1, ,= ( , , , )i i i i i Nu u u u u    


with the data 

(14)0 1 1 0N N Nu u u u u u     
       

and the slops 

(15)0, 0i iu u   

Stefanini et al. (2006) defined corresponding spaces of fuzzy numbers by the LU-representation. In the
differentiable case, they denoted by 

=0,1, ,
ˆ = {  | = ( , , , ) }N i i i i i NF u u u u u u    



the set of LU-fuzzy numbers.       is a           dimension space.ˆ
NF 4( 1)N  

Let u and v are two LU-fuzzy numbers in form 

=0,1, , =0,1, ,= ( , , , ) , = ( , , , )i i i i i N i i i i i Nu u u u u v v v v v          
 

An Euclidean-like distance on      was defined by ˆ
NF

( , ) =
4

N
N

u v
d u v

N



where 

(16)
2 2 2 2 2

=0

= ( ) ( ) ( ) ( )
N

i i i i i i i iN
i

u v u v u v u v u v                   

It is worthwhile  to  observe that also the one-sided fuzzy numbers can be easily represented by a form 

similar to the  LU-representation: a left-sided fuzzy number has α-cuts of the form               and a right-[ , [u
 

sided fuzzy number has α-cuts of the form             . Then, a left-sided fuzzy number can be written as  ] , ]u


                          or a right-sided fuzzy number as                         (see (Stefanini, L., 2006)).=0,1,...,= ( , )i i i Nu u u 
=0,1,...,= ( , )i i i Nu u u 

The arithmetic operators associated to the LU-representation can be obtained as follows. 

Definition 2.8 (Addition), (Stefanini, L., 2006). 

(17)=0,1,...,= ( , , 0, )i i i i i i i i i Nu v u v u v u v u v              

Definition 2.9 (Scalar multiplication), (Stefanini, L., 2006). For given         k

(18)=0,1,...,

=0,1,...,

( , , , ) , > 0
=

( , , , ) , < 0
i i i i i N

i i i i i N

ku k u ku k u k
ku

ku k u ku k u k

 
 

   

   




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In particular, if         then = 1k 

=0,1,...,= ( , , , )i i i i i Nu u u u u        

and subtraction is defined by 

= ( )u v u v  

Note that the scalar multiplication is always reproduced exactly in all the models for all            but, [0,1] 

in general, this is not true for the addition as the sum of rational or mixed functions is not always a rational
or a mixed function of the same orders (see (Stefanini, L., 2006)).

Integrals and derivatives of fuzzy-valued functions have discussed by Dubois and Prade (1982), Kaleva
(1987, 1990) and Puri and Ralescu (1983); see also (Kim, Y.L., 1997) for some recent results.

Let                   is a  function where                     for           is an LU fuzzy number of theˆ:[ , ] Nu a b F ( ) = ( ( ), ( ))u t u t u t  [ , ]t a b
form 

 =0,1, ,( ) = ( ( ), ( ), ( ), ( ))i i i i i Nu t u t u t u t u t    


the integral of       with respect to           . is given by ( )u t [ , ]t a b

  := ( ) = ( ) , ( ) , [0,1]
b b b

a a a
v u t dt u t dt u t dt          

Definition 2.10 (Integration), (Stefanini, L., 2006). In the LU-fuzzy representation, the integral of       is( )u t
defined as 

 =0,1, ,= ( , , , )i i i i i Nv v v v v    


where 

 = ( ) , = ( ) , = 0,1, ,
b b

i i i ia a
v u t dt v u t dt i N      

The (Hukuhara) derivative of the fuzzy-valued function       at the point     is as follows: ( )u t t̂

'

ˆ ˆ= =

ˆ( ( )) = ( ) , ( )
t t t t

d d
u t u t u t

dt dt  
  

 
 

provided that the following conditions hold:

• each             is nondecreasing with respect to            .( )
d

u t
dt 

 [ , ]t a b

• each              is nondecreasing with respect to           .( )
d

u t
dt 

 [ , ]t a b

 •   ( ) ( ), [0,1]
d d

u t u t
dt dt     

Definition 2.11 (Derivation), (Stefanini, L., 2006). In the LU-fuzzy representation, the derivative of        at ( )u t

the point    is defined as t̂
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' ' ' ' '
=0,1, ,

ˆ ˆ ˆ ˆ ˆ( ) = ( ( ), ( ), ( ), ( ))i i i i i Nu t u t u t u t u t    


and the conditions for a valid fuzzy derivative are, for               = 0,1, ,i N

' ' '
0 1

' ' '
1 0

'

'

ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( ),

ˆ( ) 0
ˆ( ) 0

N

N N

i

i

u t u t u t

u t u t u t

u t

u t




  

  






  
   







3 Fuzzy Volterra Integro-differential Equations:
In this section, we consider the fuzzy Volterra integro-differential equation 

(19)0
( ) = ( ) ( , ) ( ) ,

ˆ(0) =

x

N

u x f x k x t u t dt

u c F

  

 



where                    and              ,  where                               and                      areˆ:[0, ] Nf a F :k  = {( , ) : 0 }x t t x a    ˆ:[0, ] Nu a F

continuous.

Let                                  be the LU-fuzzy initial condition and let u(x) and f(x) have the following=0,1, ,= ( , , , )i i i i i Nc c c c c    


forms, respectively, 

=0,1, ,

=0,1, ,

( ) = ( ( ), ( ), ( ), ( )) ,

( ) = ( ( ), ( ), ( ), ( ))
i i i i i N

i i i i i N

u x u x u x u x u x

f x f x f x f x f x

 
 

   

   




then Eq. (19) can replace by 

(20)
0

( ( ), ( ), ( ), ( )) = ( ( ), ( ), ( ), ( ))

( , )( ( ), ( ), ( ), ( ))

( (0), (0), (0), (0)) = ( , , , )

i i i i i i i i

x

i i i i

i i i i i i i i

d
u x u x u x u x f x f x f x f x

dx

k x t u t u t u t u t dt

u u u u c c c c

   

 

   

       

   

       



 






Case 1. Suppose             then ( , ) 0k x t 

(21)

0

0

0 0 0 0

( , ) ( ( ), ( ), ( ), ( ))

= ( ( , ) ( ), ( , ) ( ), ( , ) ( ), ( , ) ( ))

= ( ( , ) ( ) , ( , ) ( ) , ( , ) ( ) , ( , ) ( ) )

x

i i i i

x

i i i i

x x x x

i i i i

k x t u t u t u t u t dt

k x t u t k x t u t k x t u t k x t u t dt

k x t u t dt k x t u t dt k x t u t dt k x t u t dt

 

 

 

   

   

   



   

we  can  calculate         by  solving  the  following             integro-differential  equations  (IDEs),  for ( )u x 2( 1)N 

 : = 0,1, ,i N
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(22)

0

0

( ) = ( ) ( , ) ( )

( ) = ( ) ( , ) ( )

(0) =

x

i i i

x

i i i

i i

d
u x f x k x t u t dt

dx
d

u x f x k x t u t dt
dx
u c

  

  

 









To determine the corresponding slopes we add to (22) the following           IDEs, for               : 2( 1)N  = 0,1, ,i N

(23)

0

0

( ) = ( ) ( , ) ( )

( ) = ( ) ( , ) ( )

(0) =

x

i i i

x

i i i

i i

d
u x f x k x t u t dt

dx
d

u x f x k x t u t dt
dx
u c

  

  

 

  

  

 









Case 2. Suppose              then ( , ) < 0k x t

(24)

0

0

0 0 0 0

( , ) ( ( ), ( ), ( ), ( ))

= ( ( , ) ( ), ( , ) ( ), ( , ) ( ), ( , ) ( ))

= ( ( , ) ( ) , ( , ) ( ) , ( , ) ( ) , ( , ) ( ) )

x

i i i i

x

i i i i

x x x x

i i i i

k x t u t u t u t u t dt

k x t u t k x t u t k x t u t k x t u t dt

k x t u t dt k x t u t dt k x t u t dt k x t u t dt

 

 

 

   

   

   



   

we  can  calculate        by   solving  the   following            integro-differential  equations  (IDEs),  for ( )u x 2( 1)N 

              : = 0,1, ,i N

(25)

0

0

( ) = ( ) ( , ) ( )

( ) = ( ) ( , ) ( )

(0) =

x

i i i

x

i i i

i i

d
u x f x k x t u t dt

dx
d

u x f x k x t u t dt
dx
u c

  

  

 









and  to  determine  the  corresponding  slopes  we  add  to  (25)   the   following               IDEs,  for 2( 1)N 

             : = 0,1, ,i N

 (26)

0

0

( ) = ( ) ( , ) ( )

( ) = ( ) ( , ) ( )

(0) =

x

i i i

x

i i i

i i

d
u x f x k x t u t dt

dx
d

u x f x k x t u t dt
dx
u c

  

  

 

  

  

 









Case 3. Suppose          has not constant sign on        , then ( , )k x t [0, ]x

(27)
0

( ( ), ( ), ( ), ( )) = ( ( ), ( ), ( ), ( ))

( , , ( ))

( (0), (0), (0), (0)) = ( , , , )

i i i i i i i i

x

i i i i i i i i

d
u x u x u x u x f x f x f x f x

dx

K x t u t dt

u u u u c c c c

   

   

       

       



 





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where 

(28)
( ( , ) ( ), ( , ) ( ), ( , ) ( ), ( , ) ( )), ( , ) 0

( , , ( )) =
( ( , ) ( ), ( , ) ( ), ( , ) ( ), ( , ) ( )), ( , ) < 0

i i i i

i i i i

k x t u t k x t u t k x t u t k x t u t k x t
K x t u t

k x t u t k x t u t k x t u t k x t u t k x t

 
 

   

   

 



So, if           on        and             on        ,        then ( , ) 0k x t  [0, ]a ( , ) < 0k x t [ , ]a x a x

(29)

0

0

( ) = ( ) ( , ) ( ) ( , ) ( )

( ) = ( ) ( , ) ( ) ( , ) ( )

(0) =

a x

i i i ia

a x

i i i ia

i i

d
u x f x k x t u t dt k x t u t dt

dx
d

u x f x k x t u t dt k x t u t dt
dx
u c

   

   

 

 

 

 

 

and 

(30)

0

0

( ) = ( ) ( , ) ( ) ( , ) ( )

( ) = ( ) ( , ) ( ) ( , ) ( )

(0) =

a x

i i i ia

a x

i i i ia

i i

d
u x f x k x t u t dt k x t u t dt

dx
d

u x f x k x t u t dt k x t u t dt
dx
u c

   

   

 

   

   

 

 

 

 

 

 

Theorem 3.1 The solution of (20),       , is a fuzzy number for all        . ( )u x 0x 
Proof: In Eq. (19), we suppose 

( , ( )) = ( ) ( , ( ))F x u x f x G x u x

where 

 
0

( , ( )) = ( , ) ( )
x

G x u x k x t u t dt
then we can rewrite Eq. (19) as follows: 

 
( ) = ( , ( )),

ˆ(0) = N

u x F x u x

u c F






where F is continuous mapping. Using Theorem (3.1) in (Seikkala, 1987), it is clear that Eq. (19) has  unique
fuzzy solution u(x) then Eq. (20) has unique fuzzy solution u(x), i.e. 

ˆ( ) , 0.Nu x F x 

4 Numerical Examples:
Example 4.1:Consider FVIDE 

0 0 1 1 0 0 1 1 =0,1

=0,1

0 0 1 1 0 0 1 1 =0,10

0 0 1

( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

= ( )( 1,1,0,1,1, 1,0, 1)

( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

( (0), (0), (

i

x x
i

x x t
i

d
u x u x u x u x u x u x u x u x

dx
e xe

e u x u x u x u x u x u x u x u x dt

u u u

   

   



       



        

  

   


1 0 0 1 1 =0,10), (0), (0), (0), (0), (0)) = ( 1,1,0,1,1, 1,0, 1)iu u u u u      








   
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Then, 

0 0 00

0 0 00

1 1 10

1 1 10

( ) = 1( ) ( ) , (0) = 1

( ) = ( ) ( ) , (0) = 1

( ) = ( ) , (0) = 0

( ) = ( ) , (0) = 0

xx x x t

xx x x t

xx t

xx t

d
u x e xe e e u t dt u

dx
d

u x e xe e e u t dt u
dx
d

u x e e u t dt u
dx
d

u x e e u t dt u
dx

   

   

  

  

    

  















and 

0 0 00

0 0 00

1 1 10

1 1 10

( ) = ( ) ( ) , (0) = 1

( ) = 1( ) ( ) , (0) = 1

( ) = ( ) ( ) , (0) = 1

( ) = 1( ) ( ) , (0) = 1

xx x x t

xx x x t

xx x x t

xx x x t

d
u x e xe e e u t dt u

dx
d

u x e xe e e u t dt u
dx
d

u x e xe e e u t dt u
dx
d

u x e xe e e u t dt u
dx

  

  

  

  

   

   

   

   

  

    


 

   















By solving above systems, we obtain 

 =0,1( ) = ( 1,1,0,1,1, 1,0, 1)x
iu x e   

Example 4.2 Consider FVIDE 

0 0 1 1 0 0 1 1 =0,1

4
=0,1 =0,1

0 0 1 1 0 0 1 1 =0,10

( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

1
= (0, 2, 2,2, 4, 2, 2, 2) (0,1,1,1, 2, 1,1, 1)

3

( )( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

i

i i

x

i

d
u x u x u x u x u x u x u x u x

dx

x x

x u x u x u x u x u x u x u x u x dt

   

   

       

       

    

 
0 0 1 1 0 0 1 1 =0,1( (0), (0), (0), (0), (0), (0), (0), (0)) = (0,1,1,1, 2, 1,1, 1)iu u u u u u u u          










 

Then, 

0 0 00

4
0 0 00

4
1 1 10

4
1 1 10

( ) = ( ) , (0) = 0

2
( ) = 4 ( ) , (0) = 2

3
1

( ) = 2 ( ) , (0) = 1
3
1

( ) = 2 ( ) , (0) = 1
3

x

x

x

x

d
u x x u t dt u

dx
d

u x x x x u t dt u
dx
d

u x x x x u t dt u
dx
d

u x x x x u t dt u
dx

  

  

  

  

 

  

  


  









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and 

4
0 0 00

4
0 0 00

4
1 1 10

4
1 1 10

1
( ) = 2 ( ) , (0) = 1

3
1

( ) = 2 ( ) , (0) = 1
3

1
( ) = 2 ( ) , (0) = 1

3
1

( ) = 2 ( ) , (0) = 1
3

x

x

x

x t

d
u x x x x u t dt u

dx
d

u x x x x u t dt u
dx
d

u x x x x u t dt u
dx
d

u x x x x e u t dt u
dx

  

  

  

  

  

  

  

  

  

    

  


    










By solving above systems, we obtain 

2
=0,1( ) = (0,1,1,1,2, 1,1, 1)iu x x  

5 Conclusion:
In this work, the LU-representation of FVIDE was discussed and also the existence of solutions is proved

as a theorem. The structure of LU-representation of FVIDE is comparison with the others for example α-cut
and parametric forms is simple.
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