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Abstract: In this paper,we will introduce a kind of fuzzy Volterra-Fredholm integral equation of the
second kind. We investigate existance and uniqueness of solution of them.
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INTRODUCTION

The fuzzy differential and integral equations are important part of the fuzzy analysis theory and they have
the important value of theory and application in control theory.

Seikkala (1987)  has defined the fuzzy derivative which is the generalization of the Hukuhara derivative
(Puri, 1983), the fuzzy integral which is the same as that of (Duboise, 1982), and by means of the extension 

principle of Zadeh, showed that the fuzzy initial value problem                                has a unique fuzzy        0, , 0x t f t x t x x  

solution when f satisfies the generalized Lipschitz condition which guarantees a unique solution of the
deterministic initial value problem. Park and et al. (2000) have studied the Cauchy problem of fuzzy
differential equation, charcterized those subsets of fuzzy  sets in which the peano theorem is valid. Park and
et al. (1999, 2000) have considered the existence of solution of fuzzy integral equation in Banach space and
(Subrahmaniam 1994) have proved the existence of solution of fuzzy functional equations.

Park and Jeong (2000) have studied existence of solution of fuzzy integral equations of the form 

      
0

, , , 0
t

x t f t f t s x s ds t  

where f and x are fuzzy functions.
They Park and Jeong (2000) have studied existence of solution of fuzzy integral equations of the form

         
0 0

, , , , 0
t a

x t f t f t s x s ds g t s x s ds t a     

But in this paper, we study the existence and uniqueness of the solution of fuzzy Volterra-Fredholm
integral equation of the form 

             
0 0

, , , ,
t a

x t f t k t s f s x s ds h t s g s x s ds   

where 0 < t < a and x(t) is an unknown fuzzy set-valued mapping and two kernels k(t, s) and h(t, s) are
determined fuzzy set-valued mappings.
This paper is organized as following:

In Section 2, the basic concept of  fuzzy number operation is brought. In Section 3, existence and
uniqueness of solution of fuzzy Volterra-Fredholm integral equation of the second kind is investigated and
finally, conclusion is drawn in section 5.
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Preliminaries:
Let P(U) denote the family of all nonempty compact convex subsets of U and define the addition and

scalar multiplication in P(U) as usual. Let A and B be two nonempty bounded subsets of U. The distance
between A and B is defined by the Hausdorff metric, 

 ( , ) = max{ , },sup supinf inf
b B a Aa A b B

d A B a b a b
  

 

where     denotes the usual Euclidean norm in U. Then it is clear that (P(U), d) becomes a metric space..

Let I=[0, a] dU be a closed and bounded interval and denote

                       satisfies properties below= { : [0,1] |E u u

where
• u is normal, i.e., there exists an          such that            , 0x  0( ) = 1u x
• u is fuzzy convex, 
• u upper semicontinuous, 

•                              is compact.0[ ] = { | ( ) > 0}u cl x u x

For 0 < a < 1 denote                               Then α-level set                 for all  0 < a < 1.[ ] = { | ( ) }.u x u x   [ ] ( )u P  

The set E is named set of all fuzzy real numbers. Obviously U d E. 

Definition 1: 
An arbitrary fuzzy number u in the parametric form is represented by an ordered pair of functions      ( , )u u

which satisfy the following requirements:

•                    is a bounded left-continuous non-decreasing function over [0, 1], :u u


  

•                   is a bounded left-continuous non-increasing function over [0, 1], :u u  

•                        . , 0 1u u
   

Let                            be defined by : {0}D E E 

0 1

( , ) = ([ ] ,[ ] ),supD u v d u v 

 

where d is the Hausdorff metric defined in (P(U) d). Then D is a metric on E. Further, (E, D) is a complete
metric space (Duboise, 1982; Seikala, 1987).

Definition 2: 
A mapping             is bounded, if there exists r > 0 such that :x I E

( ( ),0) < .D x t r t I 

Also, we can be proved

•                               for every              ,( , ) = ( , )D u w v w D u v  , ,u v w E

•                               for every            ,( * ,0) = ( ,0) ( ,0)D u v D u D v    , ,u v w E
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where the fuzzy multiplication is bested on the extension principle that can be proved by α-cuts of fuzzy
numbers u, v.

•                             for every           and         , ( , ) =| | ( , )D u v D u v   ,u v E 

•                                        for          and        .( , ) ( , ) ( , )D u v w z D u w D v z    , , ,u v w z E

Definition 3: 
A mapping           is strongly measurable if for  all             the  set  valued map                   :F I E [0,1]  : ( )F I P  

defined by                    is Lebesgue measurable when P(U) the topology induced by the Hausdorff metric. ( ) = [ ( )]F t F t 


Definition 4: 
A mapping               is  said  to be  integrably bounded if there is an integrable function h such that :F I E

            for every             . ( )x h t 0 ( )x F t

Definition 5;. 
The integral of a fuzzy mapping                   in defined levelwise by :[0,1]F E

                                                         is a measurable selection for        [ ( ) ] = ( ) = { ( ) | :
I I I
F t dt F t dt f t dt f I

    }F

for all            [0,1]. 

It was proved by Puri and Relescu (1983) that a strongly  measurable and  integrably bounded mapping 

             is integrable (i.e.,             ).:F I E ( )
I
F t dt E

We recall some integrability properties for the fuzzy set-valued mappings (Kaleva, 1990). 

Definition 6:

Let                 be a fuzzy valued function. If for arbitrary fixed         . and       , a         such :f E 0t  > 0 > 0
that 

 0 0| |< ( ( ), ( )) < ,t t D f t f t  

f is said to be continuous. 

Theorem 1: 

If             is continuous then it is integrable. :F I E

Theorem 2: 

Let                 be integrable and         . Then, :F G I E 

•   ( ( ) ( )) = ( ) ( ) ,
I I I

F t G t dt F t dt G t dt   

•     ( ) = ( ) ,
I I

F t dt F t dt  

•            is integrable, ( , )D F G

3



Aust. J. Basic & Appl. Sci., 5(4): 1-8, 2011

•  ( ( ) , ( ) ) ( ( ), ( )) ,
I I I

D F t dt G t dt D F t G t dt  
Existence Theorem
We consider the fuzzy Volterra-Fredholm integral equation

   (1)

        

    
0

0

, ,

, , , 0

t

a

x t f t k t s f s x s ds

h t s g s x s ds t a

 

  





where                 and                     where                     and                    and :[0, ]f a E : , : ,k E h E  = ( , ) : 0t s s t a    :[0, ]g a E E 

                   are continuous.:[0, ]q a E E 

Theorem: 
Let a ,      and      be positive numbers. Assume that Eq.(1) satisfies the following conditions:1L 2L

•                  is continuous and bounded.:[0, ]f a E

•                    are continuous where                        and there exist          and          such that: , :k E h E  = ( , ) : 0t s s t a    1 > 0M 2 > 0M

 1 20 0
( ( , ),0) , ( ( , ),0)

t t
D k t s ds M D h t s ds M   

•                                       are continuous and satisfy the Lipschitz condition, i.e., :[0, ] , :[0, ]g a E E q a E E   

   (2)1

2

( ( , ( )), ( , ( )) ( ( ), ( )),

( ( , ( )), ( , ( )) ( ( ), ( )), 0 ,

D g t x t g t y t L D x t y t

D q t x t q t y t L D x t y t t a


  

where                      and                  . 1 1
1 1 2 2< , <L M L M  , :[0, ]x y a E

•                 are bounded on       . ( ,0), ( ,0)g t q t  [0, ]a

then there exists a unique solution        of Eq.(1) on        and the successive iterations  x t [0, ]a

  (3)

0

1 0

0

( ) = ( )

( ) = ( ) ( , ) ( , ( ))

( , ) ( , ( )) , ( = 0, )

t

n n

a

n

x t f t

x t f t k t s g s x s ds

h t s q s x s ds n

 




 

are uniformly convergent to x(t) on        .[0, ]a

Proof: 
It is easy to see that all        are bounded on        . Indeed              is bounded  by hypothesis.  nx t [0, ]a 0 = ( )x f t

Assume that          is bounded, we have 1nx t
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  (4)

10

0

10

0

1
0

( ( ),0)

( ( ),0) ( ( , ) ( , ( )) ,0)

( ( , ) ( , ( )) ,0)

( ( ),0) ( ( , ),0) ( ( , ( )),0)

( ( , ),0) ( ( , ( )),0) ( ( ),0)

( ( ( , ( )),0sup

n

t

n

a

n

t

n

a

n
t a

D x t

D f t D k t s g s x s ds

D h t s q s x s ds ds

D f t D k t s D g s x s ds

D h t s D q s x s ds D f t

D g t x t






 

 



 

 











 



  

  


0

0

)) ( ( , ),0)

( ( , ( )),0)) ( ( , ),0)

t

t

n

D k t s ds

D q x D h t s ds 







 

where           . Taking every assumptions into account [0, ]a 

   (5)

1

1

1 1

1

1

2 1

( ( , ( )),0)

( ( , ( )), ( ,0)) ( ( ,0),0)

( ( ),0) ( ( ,0),0),

( ( , ( )),0)

( ( , ( )), ( ,0)) ( ( ,0),0)

( ( ),0) ( ( ,0),0),

n

n

n

n

n

n

D g t x t

D g t x t g t D g t

L D x t D g t

D q t x t

D q t x t q t D q t

L D x t D q t













 

 

 

 



  

  



  

  

We obtain that        is bounded. Thus,        is a sequence of bounded functions on       .  Next we ( )nx t ( )nx t [0, ]a

prove that        are continuous on        . For               , we have( )nx t [0, ]a 1 20 t t a  

1 2

1 2

1 2
1 1 2 10 0

1 1 2 10 0

1 2

1
1 1 2 10

( ( ), ( ))

( ( ), ( ))

( ( , ) ( , ( )) , ( , ) ( , ( )) )

( ( , ) ( , ( )) , ( , ) ( , ( )) )

( ( ), ( ))

( ( , ) ( , ( ),0) ( ( , ) ( ,

n n

t t

n n

a a

n n

t

n n

D x t x t

D f t f t

D k t s g s x s ds k t s g s x s ds

D h t s q s x s ds h t s q s x s ds

D f t f t

D k t s g s x s D k t s g s x

 

 

 











 
 

 

2
2 1

1

1 1 20 0

( ),0)

( ( , ),0) ( ( , ( )),0)

( ( , ( ),0) ( ( , ), ( , ))

t

nt

a a

n

s ds

D k t s D g s x s ds

D q s x s D h t s h t s ds











 



 



then, we obtain
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1

2

1

1 2 1 2

1 1 200

1 2
0

1 1 20

( ( ), ( )) ( ( ), ( ))

sup ( ( , ( ),0)) ( ( , ), ( , ))

sup ( ( , ( ),0)) ( ( , ),0)

( ( , ( ),0)) ( ( , ), ( , ))

n n

t

n
t a

t

n tt a

a

n

D x t x t D f t f t

D g s x s D k t s k t s ds

D g s x s D k t s ds

D q x D h t s h t s ds 


 


 



















 



By hypotheses and (5), we have

                        as          .1 2( ( ), ( )) 0n nD x t x t  1 2t t

Thus the sequence         is continuous on       . Relation (2) and its analogue corresponding to n + 1( )nx t [0, ]a
will give for n>1:

 

1

10

10

1 00

1 0

( ( ), ( ))

( ( , ),0) ( ( , ( )), ( , ( )))

( ( , ),0) ( ( , ( )) ( , ( )))

( ( ( , ( )), ( , ( )))) ( ( , ),0)sup

( ( , ( )), ( , ( )))) ( ( , ),0)

n n

t

n n

a

n n

t

n n
t a

a

n n

D x t x t

D k t s D g s x s g s x s ds

D h t s D q s x s q s x s ds

D g t x t g t x t D k t s ds

D q x q x D h t s   








 


























1 1 1 2 2 1
0

( ( ), ( )) ( ( ), ( ))sup n n n n
t a

ds

M L D x t x t M L D x x  
 

 

Thus we get 

   (6)

1
0

1 1 1 2 2 1
0

( ( ), ( ))sup

( ( ), ( )) ( ( ), ( ))sup

n n
t a

n n n n
t a

D x t x t

M L D x t x t M L D x x 


 

 
 

 

For n=0, we have 

  (7)

1 0

0 0

0 0

0

0

0

( ( ), ( ))

= ( ( , ) ( , ( )) ( , ) ( , ( )) ,0)

( ( , ) ( , ( )),0) ( ( , ) ( , ( )),0)

( ( , ),0) ( ( , ( )),0)

( ( , ),0) ( ( , ( )),0)

( ( , (sup

t a

t a

t

a

t a

D x t x t

D k t s g s f s ds h t s q s f s ds

D k t s g s f s ds D h t s q s f s ds

D k t s D g s f s ds

D h t s D q s f s ds

D g t f t
 



 







 
 





 

 

 

0

0

)),0) ( ( , ),0)

( ( , ( )),0) ( ( , ),0)

t

a

D k t s ds

D q f D h t s ds 





 

 

So, we obtain
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 1 0 1 1 2 2
0

( ( ), ( )) ,sup
t a

D x t x t M N M N
 

 

where 

                             ,                           1
0
sup ( ( , ( )),0)=

t a
D g t f tN

 


2 = ( ( , ( )),0)N D q f  

Moreover, from (6), we derive

   (8)1 1
1 1 1 1 2 2 2

0

( ( ), ( ))sup n n n n
n n

t a

D x t x t L M N L M N 


 
 

which  shows  that  the  series                          is dominated,  uniformly  on       ,  by  the  series 1=1
( ( ), ( ))n nn

D x t x t


 [0, ]a

   1 1 1 1 2 2 2 2=0 =0
( ) ( ) .n n

n n
M N L M M N L M

 
 

But (2) guarantees the convergence of the last series, implying the uniform convergence of the sequence 

       . If we denote                   , then x(t) satisfies (1). It is obviously continuous on [0, a] and bounded.( )nx t ( ) = ( )n nx t lim x t

To prove the uniqueness, let y(t) be a continuous solution of (1) on [0, a]. Then

   (9)
0 0

( ) = ( ) ( , ) ( , ( )) ( , ) ( , ( ))
t a

y t f t k t s g s y s ds h t s q s y s ds  
From (2) and (9), we obtain for n > 1.

10

10

1 00

1 0

1 1
0

( ( ), ( ))

( ( , ),0) ( ( , ( )), ( , ( )))

( ( , ),0) ( ( , ( )), ( , ( )))

( ( , ( )), ( , ( ))) ( ( , ),0)sup

( ( , ( )), ( , ( ))) ( ( , ),0)

n

t

n

a

n

t

n
t a

a

n

D y t x t

D k s t D g s y s g s x t ds

D h s t D q s y s q s x t ds

D g t y t g t x t D k t s ds

D q y q x D h t s ds

L M

   






 






























1 2 2 1( ( ), ( )) ( ( ), ( ))sup n n
t a

D y x L M D y x    




Since  1 1 2 2< 1, < 1L M L M

 ( ) = ( ) = ( ), 0 ,n nlim x t y t x t t a  

which ends the proof of theorem.

Conclusion:
In this paper, we proved the existence and uniqueness of solution of fuzzy Volterra-Fredholm integral

equation. Here, we use fuzzy kernels to obtain such solutions. For future research, we will prove existence and
uniqueness of solution of Volterra- Fredholm integro-differential equations.
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