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Abstract: A new approach for solving m×3 or 3×n rectangular games based on imprecise number
instead of a real number such as interval number takes into account is introduced. To reduce m×3 or
3×n rectangular interval game into simpler 3×3 interval game, it is introduced here the graphical
method which works well in interval numbers under consideration. The interval graphical method is
a state of the art technique to deal with the games to an inexact environment. The approach is
illustrated by numerical examples showing that a m×3 or 3×n interval games can be reduced to 3×3
interval games.
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INTRODUCTION

The theory of fuzzy sets, proposed by Zadeh (1965), has gained successful applications in various fields.
Interval game (IG) theory which is a special case of fuzzy game theory, is an important content in interval
fuzzy mathematics. IG theory has been widely applied to manufacturing company, economics, management
etc., where three decision makers are present or three possible conflicting objectives should be taken into
account in order to reach optimality. In (Narayan, A.L., 2002), it is shown that how crisp game can be
fuzzified and how 3×3 sub games involving interval number can be solved by different approaches, mainly
interval number ranking process. This approach is suitable when each player has chosen a procedure such that
it is always possible to give the maximum or minimum of three interval numbers. But reduction a rectangular
m×3 or 3×n IG without saddle point to a 3×3 interval sub-game, is the basic problem in ‘Interval Game
theory’. In dominance method (Nayak, P.K., 2003), if the convex combination of any three rows (columns)
of a pay-off matrix is dominated by the fourth row (column) which indicates that the fourth move of the row
(column) player will be an optimal move but It is not certain which one of the first three moves will be an
optimal one. To determine it the graphical method can be used. The purpose of this paper is to introduce a
graphical method for reducing an m×3 or 3×n IG to 3×3 interval sub games.

Three Person Interval Game:
Interval game theory deals with making decisions under conflict caused by opposing interests. An IG

involving 3 players is called a 3 person IG. Here A is maximizing (row) or optimistic player and B is the
minimizing (column) or pessimistic player. Here it is considered a three persons non-zero  sum IG with single
pay-off matrix. It is assumed that A is maximization (optimistic) player (row player) i.e., he/she will try to
make maximum profit and B is minimization (pessimistic) player (column player) i.e., he/she will try to
minimize the loss.

Pay-off Matrix:
The IG can be considered as a natural extersion of classical game. The pay-off of the game are affected

by various sources of fuzziness. The course of the IG is determined by the desire of A to maximize his/her
gain and that of restrict his/her loss to a minimum. Interval number ranking process is suitable when each
player has chosen a procedure such that it is always possible to give the maximum or minimum of three
interval numbers. The table showing how payments should be made at the end of the game is called a pay-off
matrix.

If the player A has m strategies available to him and the player B has n strategies available to him, then
the pay-off for various strategies combinations is represented by an m×n pay-off matrix. The pay-off is
considered as interval numbers. The pay-off matrix can be written in the matrix form as
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A a b c a b c a b c

A a b c a b c a b c

A a b c a b c a b c

 
 
 
 
 
 

Intervals of real numbers enable on to describe the uncertainty about the actual values of the numerical
variable. Here it is assumed that when player A chooses the starategy Ai and the player B selects strategy Bj

it results in a pay-off of the closed interval [aij , bij , cij] to the player A with cij –aij –bij>0. Intervals do not
admit of comparison among themselves. Here it is provided an order relation for the entries in the pay-off
matrix, so that comparison of intervals is possible.

Theorem 1:
Let A=([aij , bij , cij]); i=1,2,…m; j=1,2,…n be an m×n pay-off matrix for a 3 person IG, where [aij , bij,

cij] are interval numbers. Then the following inequality is satisfied

    [ , , ] [ , , ]ij ij ij ij ij ij
i j j i

a b c a b c    

Definition1. Saddle Point:
The concept of saddle point is introduced by Neumann (1947). The (k,r)th position of the pay-off matrix

will be called a saddle point, if and only if,

[akr , bkr , ckr] =    [ , , ] [ , , ]ij ij ij ij ij ij
i j j i

a b c a b c    

IG Without Saddle Point:
There are interval games having no saddle point. Consider a simple 3×3 IG with no saddle point with the

pay-off matrix

1 2 3

1 11 11 11 12 12 12 13 13 13

2 21 21 21 22 22 22 23 23 23

3 31 31 31 32 32 32 33 33 33

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

B B B

A a b c a b c a b c

A a b c a b c a b c

A a b c a b c a b c

 
 
 
 
 

Where                                       . In  such IG  the  principle  of saddle point solution breaks   [ , , ] [ , , ]ij ij ij ij ij iji j j i
a b c a b c    

down and the players do not have a single best plan as their best strategy. The IG in this case is said to be
unstable. 

To solve such IG, Neumann (1947) introduced the concept of mixed strategy in classical form. In all such
cases to solve games, both the players must determine an optimal mixture of strategies to find a saddle point.
An example of 3×3 IG without saddle point is 

1 2 3

1

2

3

[ 1,1,2] [1,6,8] [0,4,6]

[0,3,5] [ 2,0,1] [ 1,2,3]

[ 4, 1,1] [0, 4,3] [1,5,7]

B B B

A

A

A

 
   
   

Because     [ , , ] [ 1,1, 2] [0,3,5] [ , , ]ij ij ij ij ij ij
i j j i

a b c a b c       
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Solution of IG Without Saddle Point:
   Consider the following IG with the given pay-off matrix for which there is no saddle point

 

1 2 3

1 11 11 11 12 12 12 13 13 13

2 21 21 21 22 22 22 23 23 23

3 31 31 31 32 32 32 33 33 33

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

B B B

A

A

A

        
        
        

 
 
 
 
 

Where                                       . Let λij= cij –aij –bij>0 for i=1,2 and j=1,2.   [ , , ] [ , , ]ij ij ij ij ij iji j j i
         

The normalized pay-off matrix is then
 

                                                         = 

13 13 1311 11 11 12 12 12

11 11 11 12 12 12 13 13 13

23 23 2321 21 21 22 22 22

21 21 21 22 22 22 23 23 23

31 31 31 32 32 32 33 33 33

31 31 31 32 32 32 33 33 33

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

       
        

       
        
        
        






 
 
 
 
 
 
  



11 11 11 12 12 12 13 13 13

21 21 21 22 22 22 23 23 23

31 31 31 32 32 32 33 33 33

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

a b c a b c a b c

a b c a b c a b c

a b c a b c a b c

 
 
 
 
 

Where                                       . It is to be determined  the  probabilities  with  which each   [ , , ] [ , , ]ij ij ij ij ij iji j j i
a b c a b c    

strategy of A and B will be played to get an optimal solution.
Let xi and yj  be the probabilities with which A chooses his ith  strategy and B chooses his jth strategy

respectively. Then for this problem, the mixed strategies of A and B are respectively, X=(x1,x2,x3) and
Y=(y1,y2,y3) such that x1+x2+x3=1; x1,x2,x3 $0 and y1+y2+y3 =1; y1,y2,y3 $0. 

The expected gains for A when B chooses B1,B2 and B3 are respectively 

 
11 11 11 1 21 21 21 2 31 31 31 3

12 12 12 1 22 22 22 2 32 32 32 3

13 13 13 1 23 23 23 2 33 33 33 3

[ , , ] [ , , ] [ , , ] ,

[ , , ] [ , , ] [ , , ] ,

[ , , ] [ , , ] [ , , ] .

a b c x a b c x a b c x

a b c x a b c x a b c x

and a b c x a b c x a b c x

 

 

 

The values of X has to be selected in such a way that the gain for A remains the same whatever be the
strategy chosen by B, i.e., 

11 11 11 1 21 21 21 2 31 31 31 3

12 12 12 1 22 22 22 2 32 32 32 3

13 13 13 1 23 23 23 2 33 33 33 3

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ] .

a b c x a b c x a b c x

a b c x a b c x a b c x

a b c x a b c x a b c x

  
  

 

11 1 21 2 31 3 12 1 22 2 32 3

13 1 23 2 33 3

31 2
1 2 3

( )

; ;

a x a x a x a x a x a x

a x a x a x k say

kAkA kA
x x x

A A A

    

   

   

21 31 11 31

1 22 32 2 12 32

23 33 13 33

1 1

1 ; 1

1 1

a a a a

Where A a a A a a

a a a a

 
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11 21 11 21 31

3 12 22 12 22 32

13 23 13 23 33

1 2 3

1

1 ;

1

a a a a a

A a a A a a a

a a a a a

A
and k

A A A

 


 

Similarly for 

11 1 21 2 31 3 12 1 22 2 32 3

13 1 23 2 33 3 ( )

b x b x b x b x b x b x

b x b x b x l say

    

   

and 

11 1 21 2 31 3 12 1 22 2 32 3

13 1 23 2 33 3 ( )

c x c x c x c x c x c x

c x c x c x m say

    

   

Thus, the solution for x1, x2 and x3 .
The relations satisfied by x1 is 

 1 1 1
1 1 1; ; ;

kA lB mC
x x x

A B C
  

As a whole, it follows that a solution exists only when the aij’s,bij’s and  cij’s   satisfy                1 1 1kA lB mC

A B C
 

and according to the relation cij=aij+bij+1 for i,j=1,2,3 this equality holds, when all the intervals are of same

length i.e.,                  .ij ij ij     

Thus                                    31 2
1 2 3; .

kAkA kA
x x and x

A A A
  

Similarly                                     which are crisp numbers  and  the  value  of  the  game can be31 2
1 2 3;

kAkA kA
y y and y

A A A
  

easily computed as                                                     .1 2 3 1 2 3 1 2 3, ,
A A A B B B C C C

V
A B C

         
Example:

Consider, for example, the IG whose pay-off matrix is given below and which has no saddle point.

1 2 3

1

2

3

(1,3, 4) (2,0,3) (3, 1, 2)

(2,0,3) (3, 1, 2) (1,2,0)

(3, 1, 2) (1, 2,0) (2,3,1)

B B B

A

A

A

  
   
   

Hence the required probabilities are x1 = 1/3=x2=x3 and y1=y2=y3=1/3,  A= -18 and A1=-9=A2=A3 and also
k=2. The value of the game [1/2,1,5]

Graphical Method:
If the graphical method is applied for a particular problem, then the same reasoning can be used to solve

any IG with mixed strategies that has only three non-terminated pure strategies for one of the players. This
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method is useful for the IG where the pay-off matrix is of the size 3×n or m×3 i.e., the IG with mixed
strategies that has only three pure strategies for one of the players in the IG.Optimal strategies for both the
players assign non-zero probabilities to the same number of pure strategies. It is clear that if one player has
only three strategies, the other will also use the same number of strategies. Hense, graphical method is useful
to find out which of the two strategies can be used.

General Rule to Draw a Graph:
Consider the following two 3×n and  m×3 IG without saddle point:

1 2

11 11 11 12 12 12 1 1 11

21 21 21 22 22 22 2 2 22

3 31 31 31 32 32 32 3 3 3

1 2 3

1 11 11 11 12 12 12

2

( ) ...

[ , , ] [ , , ] ... [ , , ]

[ , , ] [ , , ] ... [ , , ]

[ , , ] [ , , ] [ , , ]...
( )

[ , , ] [ , , ]

[

...

n

n n n

n n n

n n n

m

a B B B

a b c a b c a b cA

a b c a b c a b cA

A a b c a b c a b c

b B B B

A a b c a b c

A a

A

 
 
 
 
 

13 13 13

21 21 21 22 22 22 23 23 23

1 1 1 2 2 2 3 3 3

[ , , ]

, , ] [ , , ] [ , , ]

... ... ...

[ , , ] [ , , ][ , , ]m m m m m m m m m

a b c

b c a b c a b c

a b c a b c a b c

 
 
 
 
 
 

(i) Draw three parallel vertical lines one unit distance apart and mark a scale on each.
(ii)   For the case (a), the three strategies A1 A2 A3 of A are represented by these three straight lines.
(iii) For the case (b) the three strategies B1 B2 B3 of B are represented by these three straight lines.
(iv) For the case (a), since the player A has 3 strategies, let the  mixed strategy for the player A is given by

                  where x1+x2+x3=1; x1,x2,x3 $0. 1 2 3

1 2 3
A

A A A
S

x x x

 
  
 

B’s pure move A’s expected pay-off E(x)

 
1 11 11 11 1 21 21 21 2 31 31 31 1 2

11 31 11 31 11 31 1

21 31 21 31 21 31 2 31 31 31

[ , , ] [ , , ] [ , , ](1 )

[ , , ]

[ , , ] [ , , ]

B a b c x a b c x a b c x x

a b b c c a x

a b b c c a x a b c

   

    

   

2 12 12 12 1 22 22 22 2 32 32 32 1 2

12 32 12 32 12 32 1

22 32 22 32 22 32 2 32 32 32

[ , , ] [ , , ] [ , , ](1 )

[ , , ]

[ , , ] [ , , ]

B a b c x a b c x a b c x x

a b b c c a x

a b b c c a x a b c

   

    
   

1 1 1 1 2 2 2 2 3 3 3 1 2

1 3 1 3 1 3 1

2 3 2 3 2 3 2 3 3 3

[ , , ] [ , , ] [ , , ](1 )

[ , , ]

[ , , ] [ , , ]

n n n n n n n n n n

n n n n n n

n n n n n n n n n

B a b c x a b c x a b c x x

a b b c c a x

a b b c c a x a b c

   

    
   

This shows that the player A’s expected pay-off varies bilinearly with x1 and x2. According to the min-max
criterion for the mixed strategy games, the player A should select the value of x1 and x2 so as to minimize
his minimum expected pay-offs. Thus the player B would like to choose that pure moves Bj against SA for
which Ej(x) is a minimum for j=1,2,..n. Let us denote this minimum expected pay-off for A by
v=min{Ej(x);j=1,2,..n}. The objective of player A is to select x1 , x2 and hence x3 in such a way that v is as
large as possible. This may be done by plotting the regions R1 ,R2 ,..Rn plotted by three parallel straight lines
as



Aust. J. Basic & Appl. Sci., 5(3): 1-10, 2011

6

11 31 1 21 31 2 31 11 31 1

21 31 2 31 11 31 1 21 31 2 31

{ ( ) ( ) , ( )

( ) , ( ) ( ) }

y a b x a b x a y b c x

b c x b y c a x c a x c

       
      

12 32 1 22 32 2 32 12 32 1

22 32 2 32 12 32 1 22 32 2 32

{ ( ) ( ) , ( )

( ) , ( ) ( ) }

y a b x a b x a y b c x

b c x b y c a x c a x c

       

      

1 3 1 2 3 2 3 1 3 1

2 3 2 3 1 3 1 2 3 2 3

{ ( ) ( ) , ( )

( ) , ( ) ( ) }
n n n n n n n

n n n n n n n n

y a b x a b x a y b c x

b c x b y c a x c a x c

       

      

drawn to represent the gains of A corresponding to B1 ,B2 ,...Bn respectively B on the line representing A1 with
on line representing A2 and A3.
(v) Now the three strategies of player B corresponding to those regions which pass through the maximum
region can be determined. It helps in reducing the size of the IG to 3×3.
(vi) Similarly, for the case (b), since the player B has three strategies, let the mixed strategy for the player

A is given by                   where y1+y2+y3 =1; y1,y2,y3 $0. Thus for each of the pure strategies available1 2 3

1 2 3
B

B B B
S

y y y

 
  
 

to the player A, the expected pay-off for the player B, would be as follows

A’s pure moves B’s expected pay-off E(y)

1 11 11 11 1 12 12 12 2 13 13 13 1 2

11 13 11 13 11 13 1

12 13 12 13 12 13 2 13 13 13

2 21 21 21 1 22 22 22 2 23 23 23 1 2

21 23 21 23

[ , , ] [ , , ] [ , , ](1 )

[ , , ]

[ , , ] [ , , ]

[ , , ] [ , , ] [ , , ](1 )

[ , ,

A a b c y a b c y a b c y y

a b b c c a y

a b b c c a y a b c

A a b c y a b c y a b c y y

a b b c

   
    

   
   

   21 23 1

22 23 22 23 22 23 2 23 23 23

1 1 1 1 2 2 2 2 3 3 3 1 2

1 3 1 3 1 3 1

2 3 2 3 2 3 2 3 3 3

]

[ , , ] [ , , ]

...

[ , , ] [ , , ] [ , , ](1 )

[ , , ]

[ , , ] [ , , ]

m m m m m m m m m m

m m m m m m

m m m m m m m m m

c a y

a b b c c a y a b c

A a b c y a b c y a b c y y

a b b c c a y

a b b c c a y a b c

 
   

   

    
   

This shows that the player B’s expected pay of varies bi-linearly with y1 and y2. According to the max-min
criterion for the mixed strategy games, the player B should select the value of y1 and y2 so as to minimize
his maximum expected pay-offs. This may be done by plotting the regions L1 ,L2 ,..Lm plotted by the three
parallel straight lines as

 11 13 1 12 13 2 13 11 13 1

12 13 2 13 11 13 1 12 13 2 13

{ ( ) ( ) , ( )

( ) , ( ) ( ) }

y a b y a b y a y b c y

b c y b y c a y c a y c

       
      

21 23 1 22 23 2 23 21 23 1

22 23 2 23 21 23 1 22 23 2 23

{ ( ) ( ) , ( )

( ) , ( ) ( ) }

y a b y a b y a y b c y

b c y b y c a y c a y c

       

      

 1 3 1 2 3 2 3 1 3 1

2 3 2 3 1 3 1 2 3 2 3

{ ( ) ( ) , ( )

( ) , ( ) ( ) }
m m m m m m m

m m m m m m m m

y a b y a b y a y b c y

b c y b y c a y c a y c

       

      

drawn to represent the gains of B corresponding to A1, A2,..Am respectively of A on the line representing B1

with on the line representing B2 and B3. This method is illustrated by different types of numerical examples.
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Theorem 2:
A region which will gives the bounds of maximize the minimum expected gain of B will give an optimal

value of the probability x1,x2 ,x3 and the region will refer three courses of action taken by A for the purpose.
Proof: According to the general  theory  of  games,  in  a  first  step the player  A  would  try  to  obtain

                      while   for   the  player  B  the   objective  is                  .  If  the   real  matrix [ , , ]ij ij iji j
a b c   [ , , ]ij ij ijj i

a b c 

                  has no saddle points mixed strategies must be used. The mixed strategy problem is solved [ , , ]ij ij ij m n
a b c



by applying the min-max criterion in which the maximizing player chooses the probabilities xi which minimize
the smallest expected gains in the columns and the minimizing player chooses his probabilities yj which
minimize the least expected gains of rows. Obviously  the  players  obtain  their  optimal  strategies  from

                      and                     . This problem becomes classical game and xi,yj is chosen in such [ , , ]ij ij ij i ji j
a b c x y   [ , , ]ij ij ij i j

j i
a b c x y 

a  way  that                       =                     .  Let V the value of the game given by the pay-off [ , , ]ij ij ij i ji j
a b c x y   [ , , ]ij ij ij i j

j i
a b c x y 

matrix                    as 
3

[ , , ]ij ij ij n
a b c



1 2

11 11 11 12 12 12 1 1 11

21 21 21 22 22 22 2 2 22

3 31 31 31 32 32 32 3 3 3

...

[ , , ] [ , , ] ... [ , , ]

[ , , ] [ , , ] ... [ , , ]

[ , , ] [ , , ] [ , , ]...

n

n n n

n n n

n n n

B B B

a b c a b c a b cA

a b c a b c a b cA

A a b c a b c a b c

 
 
 
 
 

without any saddle point. Let the mixed strategies used by A be X=(x1 ,x2 ,x3) and B be Y=(y1 ,y2 ,…,yn), in

which                                                  Then  the  expected  gain of the player A given that B1 0; 1 0.i i j j
i j

x and x y and y    
plays his pure strategy Bj is given by 

1 1 1 1 2 2 2 2

3 3 3 1 2

( ) [ , , ] [ , , ]

[ , , ](1 ), 1,2,...

j j j j j j j

j j j

E X a b c x a b c x

a b c x x j n

  

  

Now all x1 ,x2, x3 must lie in the open interval (0,1), because if either x1 or x2 or x3 = 1 the game is of
pure strategy. Hence Ej(X) is a bilinear function of x1 and x2. Considering Ej(X) as a bilinear function of x1

and x2 and from the limiting values (0,1) of x1 & x2;

3 3 3 1 2

2 2 2 1 2

1 1 1 1 2

[ , , ], 0

( ) [ , , ], 0; 1

[ , , ], 1; 0

j j j

j j j j

j j j

a b c x x

E X a b c x x

a b c x x

  


  
  

Hence Ej(X) represents  a region joining the points                                                             3(0,0, ),ja 3(0,0, ),jb 3(0,0, ),jc 2(0,1, ),ja 2(0,1, ),jb

                                               . Now  A expects a least possible gain V so that Ej(X)$V,  for2 1 1 1(0,1, ), (1,0, ), (1,0, ), (1,0, )j j j jc and a b c

all j. The main objective of A is to select x1,x2,x3 in such a way that x1+x2+x3=1 and all lie in the open
interval (0,1). Consider the following 3×3 pay-off matrix, where Br ,Bs and Bt are three critical moves of B,
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1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

r s t

r r r s s s t t t

r r r s s s t t t

r r r s s s t t t

B B B

A a b c a b c a b c

A a b c a b c a b c

A a b c a b c a b c

 
 
 
 
 

Then the expectation of A is

            

1 1 1 1 1 1 1 1 1 2 1 1 1 1 3

2 2 2 2 1 2 2 2 2 2 2 2 2 2 3

3 3 3 3 1 3 3 3 3 2 3 3 3 3 3

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

r r r s s s t t t

r r r s s s t t t

r r r s s s t t t

a b c x y a b c x y a b c x y

a b c x y a b c x y a b c x y

a b c x y a b c x y a b c x y

   
  

 

Player A would always try to mix his moves with such probabilities so as to maximize his expected gain.

This  shows  that  if  A  chooses                                                                           and1
1

kA
x

A


2 3

1 2 3

2 3

1

1

1

r r

s s

t t

a a

where A a a

a a


1 2 3

1 2 3

1 2 3

r r r

s s s

t t t

a a a

and A a a a

a a a



                     then  he  can  ensure  that  his  expectation  will  be  at  least 
1 2 3

A
k

A A A


 

                                               .1 2 3 1 2 3 1 2 3, ,
A A A B B B C C C

A B C

      
  

 This choice of x1 will thus be optimal to the player A.
Thus the lower bound of the regions will give the minimum expected gain of A as a function of x1 and

x2. Hence with the help of graphical method, the position is to find two particular moves which will gives the
bounds of maximum pay-off among the choosing minimum expected pay-off on the lower bounds of B. Thus
the mixed strategy problem is solved by applying the min-max criterion in which the maximizing player
chooses the probabilities xi which minimize the smallest expected gains in columns. Thus, a region to be found
which will give the bounds of maximum pay-off among the minimum expected pay-off on the lower region
of B. For this any two pair of lines having opposite signs for their slopes will define an alternative optimal
solution region and the optimal value of probability x1 ,x2 and x3.

Theorem 3:
A region which will give the bounds of minimize the maximum expected loss of A, and the lowest bound

of all regions will give the minimum expected pay-off (min-max value) and the optimal value of the
probability y1 , y2 , y3.
Proof: The proof of this theorem is similar to theorem 2.

Particular Cases and Numerical Examples:
Example:

Consider the 3×6 IG problem whose pay-off matrix is given below. The game has no saddle point

1 2 3 4 5 6

1

2

3

(0,2,1) (2,4,0) ( 1,1, 2) (1,3, 4) (2,0,3) (3, 1, 2)

(2, 4,0) ( 1,1,2) (1,3, 4) (2,0,3) (3, 1, 2) (1,2,0)

( 1,1, 2) (1,3,4) (2,0,3) (3, 1, 2) (1,2,0) (2,3,1)

B B B B B B

A

A

A

   
    
    
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Let the player A play the mixed strategy                     against player B, where x1+x2+x3=1; x1,x2,x3
1 2 3

1 2 3
A

A A A
S

x x x

 
  
 

$0. The A’s expected pay-off’s against B’s pure moves are given by
B’s pure move A’s expected pay-off E(x)

1 1 2 1 2 1 2

2 1 2 1 2 1 2

3 1 2 1 2 1 2

4 1 2 1 2 1 2

5 1 2 1 2 1 2

6 1 2 1 2 1 2

( 1,0 2 1, 2 2)

( 4 1,0 3 3, 4)

( 2, 2 0 0,0 2 3)

(2 3 3,5 2 1, 0 2)

(0 1,0 2, 2 3 0)

(0 2 2, 2 3, 4 2 1)

B x x x x x x

B x x x x x x

B x x x x x x

B x x x x x x

B x x x x x x

B x x x x x x

      
       
       

     
     
       

Three parallel axes are drawn , the strategies A1,A2 and A3 of A are represented by these three straight
lines. These expected pay-off equations are plotted as functions of x1 and x2 as shown the fig.1. Now since
the player A wishes to maximize his minimum expected pay-off, it is considered that the highest region of
intersection on the lower region of A’s expected pay-off equations. From the figure so as to obtain from above
drawing a region, PR of this bounds refers to the maximum of minimum gains. At this region B has used his
three courses of action and they are B4 , B5 and B6 as it is the region of intersection of B4 , B5 and B6. The
solution to the original 3×6 game, therefore, reduces to that of the simpler game with the 3×3 pay-off matrix.

4 5 6

1

2

3

(1,3,4) (2,0,3) (3, 1, 2)

(2,0,3) (3, 1, 2) (1,2,0)

(3, 1, 2) (1,2,0) (2,3,1)

B B B

A

A

A

  
   
   

The abscissa of the points P and R are 3 and the ordinates of P and R -3/2,9/2. Therefore the optimal
strategies are for A(3/2,3/2,3/2) and the value of the game V is [1/2,1,5]. The probabilities for B4 , B5 and B6

are obtained from graph as (0,0,0,1/2,1/4,1/4) and in this case also the value of the game V is [1/2,1,5]. Here
B1 , B2 and B3 are dominated strategies as is obvious from the graph as also from the pay-off matrix.

The method is equally applicable to n×3 IG. But in this case the graph stands for B’s loss against the
probability y with which B plays B1. In this case to minimize the maximum loss of B, observed from the
above figure. The lowest region of this bound will refer to the three courses of the action taken by A for the
purpose.

Conclusion:
This paper  presents an application of graphical method for finding the solution of three person non-zero

sum IG for fixed strategies. Numerical examples are presented to illustrate the methodology. Our proposed
method is simple and more accurate to deal with the general three person of IG problems. Hence the proposed
method is suitable for solving the proactical IG problems in real applications. Application of IG takes place
in civil engineering, lunching advertisement camping for competing products, planning war strategies for
opposing armies and other areas.
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Fig. 1: Graphical solution of 3×6 IG.
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