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Abstract: The gravitational  oscillation of a dielectric fluid cylinder surrounded by gravitational

dielectric medium of negligible motion has been investigated via the normal mode analysis for

axisymmetric perturbation. The acting forces on the model are : self-gravitating, pressure gradient and

electrodynamic forces with oscillating time dependent electric field. The model is governed by

Mathieu second order integro-differential equation. The oscillating electric field is only destabilizing

in  few  axisymmentric  states  but it is strongly stabilizing in the remaining axisymmentric states.

The self gravitating has strong destabilizing influence in the domain 0<x<1.0667 while it is stabilizing

in the other states. The oscillating electric fields modify the gravitation stability states.

Key words: Electrogravitational,  Periodic time dependent, Hydrodynamic stability, Stability of

laminar  flows,  PACS  numbers: 47.20.-K Hydrodynamic stability,  47.15.Fe Stability

of laminar flows  

INTRODUCTION

Rayleigh (1945) has been  the response of the capillary instability and oscillation of a long fluid cylinder.

The stability criterion founded by Rayleigh (1945). He laid the theoretical foundation for treating this problems.

More extension along this problems and other acting by different forces are studied by Chandrasekhar (1981).

Recently, Radwan (2004 and 2005 )has  developed the hydrodynamics and hydromagnetic instability of

different cylindrical models. The electro hydrodynamics stability of cylindrical interface has been investigated

in several contexts (Reynolds 1965, Yih 1968, Nayyar and Nurty 1960, Mohammed et.al. 1986 and Baker

1983). These works have some applications concerning from design of sprays to the design of inkjet printers.

Chandrasekhar and Fermi (1953) has, for first time, studied the self-gravitating instability of fluid cylinder. See

also Chandrasekhar (1981). The electrogravitational stability of fluid cylinder has developed by Radwan (1991).

He considered that the fluids are penetrated by constant and uniform electric fields. In the present paper we

study the axisymmetric gravitational oscillation of a fluid cylinder under longitudinal oscillating time-dependent

electric field. We find that the unperturbed state involves parameters which are time-depentent while the

elimination of the time from the fundamental equations is cumbersome. W e obtained second order differential

equation  of  Mathieu,  cf.   Mclachlan  (1964), Morse and Feshbach (1953), Woodson & Melcher (1968).

The  details  and  the  characteristics  of the in-stability domains has been obtained with using the normal

mode analysis.     

Basic Equations:

0We consider an incompressible, gravitational, inviscid fluid cylinder, of (radius R ) uniform mass density

ñ and dielectric constant �  surrounded by a dielectric medium of negligible motion with dielectric constant i

�  (superscripts i and e denote respectively the interior and exterior of the fluid cylinder ). We assume that thec

quase-static approximation, (see  Baker 1983, Mohamed 1986 & Radwan 1991 a,b ), is valid and also that

there are initially no surface charges at the interfaces so that the surface charge density will be postulated to

be zero during the perturbation.  The fluid cylinder and the surrounding region are pervaded by the oscillating

time-dependent electric fields

(1)
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0where E  is the amplitude of the electric fields inside and outside the fluid jet, t is the time and ù is the

electric field frequency. The components of are taken along the utilized cylindrical polor coordinates

(r,0,z) with the z-axis coinciding with the axis of the cylinder. The forces acted on the fluid cylinder are  the

pressure gradient, self- gravitating and electrodynamic forces while the medium surrounding the fluid cylinder

is subject up on electrodynamic and self- gravitating forces only.

The required basic equations  for studying the stability of such kind of problems are coming out from the

combination of the ordinary hydrodynamic equations together with those of Maxwell's electrodynamic theory

and with those of Newtonian's gravitational field. Under the present circumstances the basic equations are the

vector electrogravitational equation of motion (2), the fluid conservation of mass equation (3), the solenoidal

character of the electric displacement current equation (4), the circulation of the electric field (note that there

is no surface charge) equation (5), and the poisson's and laplace's equations satisfying the gravitational

potentials interior and exterior the fluid cylinder, equation (6) and (7). 

These equations may be formulated as

(3)

(4)

(5)

(6)

(7)

(8)

where u and p are the fluid velocity vector and kinetic pressure, E  is the electric field intensity, V is the

gravitational potential and G  is the gravitational constant.

Unperturbed State: 

In the initial state, the basic equations take the form 

(9,10)

(11,12)

(13,14)

(15)

where the subscript 0 here and henceforth indicates unperturbed quantities. The equations (9)----(15) are

simplified, by taking into account,  are solved and moreover the solutions are matched at the

0unperturbed boundary surface r=R .

Apart from the singular solutions as r tends to zero inside the fluid cylinder and as r tends to infinity

exterior it, the solution of the basic equations (1)----(8) in the initial state are given by 

(16)

(17)

(18)
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(19)

Perturbation State:

Consider the influence of a small wave disturbance on the boundary surface of the fluid propagation in

the positive z-direction.  The surface deflection at time t is assumed to be of the form

(20)

(21)

where ã(t) is the amplitude of the perturbation which is some function of t,   while k (a real number )is the

1longitudinal wavenumber.  The second term on the right side of (20), R  is the surface-wave elevation

measured from the unperturbed position. For small departures from the initial unperturbed state, each physical

quantity q(r, 0, z, t) may be expanded as

(22)

where q is pertaining to and subscript 1 associating the perturbed quantities.

Based on this expansion,  the basic equations (2)----(8) yield the linearised equations in the fluid

(23,24)

(25,26)

(27,28)

Surrounding the Fluid Cylinder:

(29,30)

(31)

One have to refer here that (in view of equation (24)) represents the tolal electrohydrodynamic

pressure, which is the sum of the kinetic and electrodynamic pressures.

By  taking the divergence of the vector equation (23) and utilizing the conservation mass equation (27)

we get

(32)

Equation (26) as well as (30) means that can be derived from a scalar (electrical potential ) function

such that 

(33)
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Combining equation(33) with equations (25) and (29), we get 

(34)

As we see the perturbed linearised variables could be obtained if  Laplace's equations (28),  (31),  and

(34) are solved for the scalar functions 

By the use of the linear perturbation technique for cylindrically time space dependence, each relevant

perturbation quantity may be expressed as

(35)

Consequently  Laplace's equations (28), (31), (32) and (34)

(36)

could be simplified and turned to ordinary total second order differential equation

Apart from the singular solutions as r � 0 inside the fluid cylinder and as r � � outside the cylinder in

the surrounding medium, the non-singular solutions are obtained 

(38)

(39)

(40)

(41)

(42)

where  are arbitrary functions of integrations to be determined,

are the modified Bessel's functions of the first and second kind of order m. 

Boundary Conditions:

The  non-singular  solutions  of  the  linearised perturbation equations (23)---(31) of the basic equations

(2)----(8) given by the system (38)----(42) must satisfy certain appropriate boundary conditions.

(i) The normal component of the velocity vector must be compatible with the velocity of the boundary

perturbed surface of the fluid at the initial level .  This condition yields 

(43)

By the use of  equations (20),  (23),  (24) and  (42) for the condition  (43), we get
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(44)

where is the dimensionless longitudinal wavenumber

(ii) The gravitational potential and its derivative must be continuous across the perturb

boundary fluid interface at . By the use of these conditions which are

(45)

(46)

and upon utilizing equations (16), (17),  (21),  (38) and (39),  we obtain

(47)

(48)

where use has been made of the Wronskian relation

(49)

in obtaining (47) and (48).

(iii)  The normal component of the electric displacement current must be continuous across the perturbed

boundary interface at . This condition read

(50)

(51)

Here N is, the outward unit vector normal to the interface (20) at , given by

(52)

(53)

(54)

Consequently the condition (50),  yields 

(55)
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(iv)The electric potential Ø must be continuous across the perturbed boundary surface of the fluid cylinder at

the initial level , i.e.

(56)

Equations (55) and (56),  finally yield

(57)

(58)

(v) The  stresses across the cylindrical fluid interface are being due to the fluid kinetic pressure, self-

gravitating and electrical forces. All these are well known since a time ago except the latter which become

familiar after the pioneering works of Reynolds (1965).  See also Yih (1968).

The stresses due to the electrical forces are, in the tensor form, being

Here T is the temperature, � is the fluid permittivity and E the electric field strength. Following Reylnolds

(1965), we denote the quantity  by ô, the following stresses continuity relation exists at the interface

This jump restriction yields

(59)

which is valid  across the displaced interface By substi

 in equation (59), we get

(60)

Equation (60) is an integro-differential equation governing the surface displacement . Through which

we could identify the  instability and  stability state,  and also identify the self-gravitating and electrodynamic

forces influences on the stability of the present model.

However in order to do so,  it is found more convenient to express this equation in the following form
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(61)

(62)

(63)

Equation (61) has the canonical form

(64)

(65)

Equation (64) is the Mathieu differential equation. The properties of the Mathieu functions are explained

and investigated by Mclachlan (1964). The solutions of equation (64), under appropriate restrictions, could be

periodic and consequently the considered model will be stable and vice verse. The conditions required for

periodicity  of Mathieu functions is mainly depond on the correlation relates the parameters a and q*.

However it is well known, see Mclachlan (1964), that (a , q*)  -plane is divided essentially into two stable

and unstable domains separated by the characteristic curves of Mathieu function. Thence we can state as a

general statement that a solution of Mathieu integro-differential equation is unstable if the point (a , q*) say,

in the (a , q*) -plane lies interior an unstable domain, otherwise it is stable.

Discussions:

The appropriate solutions of equation (64) are given in terms of what called ordinary Mathieu functions

which, indeed, are periodic in time t with period ð or 2ð

Corresponding to extremely small values of q*, the first region of instability is bounded by the curves

(66)

The conditions for oscillation lead to the problem of the boundary regions of Mathieu functions where

Mclachian  (1964) gives the condition of stability as 

(67)

where Ä (0) is the Hill's determinant.

An approximate criterion for the stability near the neighbourhood of the first stable domains of the Mathieu

stability domains given by Morse and Feshbach (1953) which is valid only for small values of 

i.e. The frequency ù of the electric field is very large. 

This criterion, under the present circumstances, states that the model is ordinary stable if the restriction
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(68)

is satisfied where the equality is corresponding to the marginal (neutral)stability. The inequality (68) is a

quadratic relation in h  and could be rewritten in the form2

(69)

where are, the two roots of the equality of the relation (68),being

(70)

(71)

(72)

The magnetogravitational stability and instability investigation analysis should be carried out in the

following different cases 

The case:  

In this case Ä  is positive and therefore the two roots of the equality (68) are real. Now we2

will show that both are positive. If then must be negative and this means

(73)

(74)

and  this is contradiction, so must be positive and consequently as well (noting that 

This means that both the quantities are negative and that in turn show

inequality (68) is identically satisfied in the axisymmetric disturbance mode m  = 0.

The Case: 

In this case in which b < 1 and simultaneously 3b < 2, it is found that Ä  is negative i.e. Ä is imaginary,2

therefore the two roots  are complex. We may prove that the inequality (68) is satisfied as follows.

Let are real, so 

(75)
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which is positive definite.

By an appeal to the cases  (i) and (ii), we deduce that the model is stable under the restrictions

(76)

0This means that the model is stable if there exists a critical value ù  of the electric field frequency ù

0 0such that ù > ù  where ù  is given by 

(78)

0one has to mention here that if ù = 0 and at the same time E  = 0 and we suppose that 

, (79)

the second order integro-differential equation of Mathieu equation (60) yields

(80)

where ó is the temporal amplification and note by the way that has a unit of time.  The relation

(80) for the single sausage mode m  = 0 reduce to the gravitational dispersion relation derived for first time

by Chandrasekhar and Fermi (1953).  In fact they (1953) have used a totally different technique rather than

that used here.  They have used the method of representing the solenoidal vectors in term of peloidal and

toroidal vector fields, which is valid only for the axisymmentric mode m  = 0.

To determine the effect of ù it is found more convenient to investigate the eigenvalue relation (80) since

the right side of it is the same as the middle side of (78).

Taking into account the recurrence relations (cf. Abramowitz and Stegun 1970) of the modified Bessel's

functions and their derivatives

We see, for x � 0, that

(81)

(82)

Now, returning to the relation (80), we deduce that the determining of the sign  is identified if

the sign of the quantity

(83)

Here it is found that the quantity may be positive or negative depending on  values.

Numerical investigations and analysis of the relation (80) reveal that ó  is positive for small values of x  while2

it is negative in all other values of x. In more details:  it is unstable in the domain while it is

stable in the domains where the equality is corresponding to the marginal stability.

From  the foregoing discussions, investigations and analysis, we conclude ( on using (83) for (80)) that

the quantity
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(84)

has the following properties 

(85)

0Now returning to the relation (78) concerning the frequency ù  of the periodic electric field 

(86)

Therefore, as a general conclusion, we deduce that the electrodynamic force (with a periodic electric field)

has stabilizing influence could predominate and overcoming the self-gravitating destabilizing influence of the

dielectric fluid cylinder dispersed in a dielectric medium of negligible motion. 

However, the self-gravitating destabilizing influence could not be suppressed whatever is the greatest value

of the magnitude and frequency of the periodic electric field because the gravitational destabilizing influence

will persist.
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